Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (x^4-4x^3)+(3x^3-12x^2)+(2x^2-8x)-(2x-8)
= x^3.(x-4)+3x^2.(x-4)+2x.(x-4)-2.(x-4)
= (x-4).(x^3+3x^2+2x-2)
Tk mk nha
\(A=x^8-2x^4-8\)
\(A=x^8-2x^4+4x^4-8\)
\(A=x^4\left(x^4-2\right)-4\left(x^4-2\right)\)
\(A=\left(x^4-4\right)\left(x^4-2\right)\)
\(a=\left(x^2-2\right)\left(x^2+2\right)\left(x^4-2\right)\)
\(A=\left(x^4\right)^2-4x^4+2x^4-8\)
\(=x^4\left(x^4-4\right)+2\left(x^4-4\right)\)
\(=\left(x^4+2\right)\left(x^4-4\right)\)
\(=\left(x^4+2\right)\left(x^2+2\right)\left(x^2-2\right)\)
\(=\left(x^4+2\right)\left(x^2+2\right)\left(x-2\right)\left(x+2\right)\)
Bạn cũng có thể đặt \(t=x^4\)để bài toán dễ làm hơn
\(x^8+3x^4+4\)
\(=\left(x^8-x^6+2x^4\right)+\left(x^6-x^4+2x^2\right)+\left(2x^4-2x^2+4\right)\)
\(=x^4\left(x^4-x^2+2\right)+x^2\left(x^4-x^2+2\right)+2\left(x^4-x^2+2\right)\)
\(=\left(x^4+x^2+2\right)\left(x^4-x^2+2\right)\)
\(4x^4+4x^3+5x^2+2x+1\)
\(=\left(4x^4+2x^3+2x^2\right)+\left(2x^3+x^2+x\right)+\left(2x^2+x+1\right)\)
\(=2x^2\left(2x^2+x+1\right)+x\left(2x^2+x+1\right)+\left(2x^2+x+1\right)\)
\(=\left(2x^2+x+1\right)^2\)
Ta có : x4 + 8x2 + 7x + 8
= x4 - x + 8x2 + 8x + 8
= x(x3 - 1) + 8(x2 + x + 1)
= x(x - 1)(x2 + x + 1) + 8(x2 + x + 1)
= (x2 - x)(x2 + x + 1) + 8(x2 + x + 1)
= (x2 + x + 1)(x2 - x + 8)
Học tốt nhé !
a)\(x^8+2x^4+1-x^4=\left(x^4+1\right)^2-\left(x^2\right)^2\)
\(=\left(x^4+x^2+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^2-x+1\right)\left(x^2+x+1\right)\left(x^4-x^2+1\right)\)
\(=\left(x^4+x^3+x^2\right)-\left(x^3-2007x^2-2007x-2008\right)\)
\(=x^2\left(x^2+x+1\right)-\left[x\left(x^2+x+1\right)-2008\left(x^2-x-1\right)\right]\)
\(=x^2\left(x^2+x+1\right)-\left(x^2+x+1\right)\left(x-2008\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+2008\right)\)
Ta có : \(x^8+14x^4+1\)
\(=x^8+2.x^4.7+1\)
\(=x^8+2.x^4.7+49-48\)
\(=\left(x^4+7\right)^2-48\)
\(=\left(x^4+7-\sqrt{48}\right)\left(x^4+7+\sqrt{48}\right)\)
a/\(=\left(x^4+1\right)^2+12x^4=\left(x^4+1\right)^2+4x^2\left(x^4+1\right)+4x^4-4x^2\left(x^4+1\right)+8x^4\)
\(=\left(x^4+1+2x^2\right)^2-4x^2\left(x^4+1-2x^2\right)=\left(x^4+2x^2+1\right)-\left(2x^3-2x\right)^2\)
\(=\left(x^4+2x^3+2x^2-2x+1\right)\left(x^4-2x^3+2x^2+2x+1\right)\)
b/\(=\left(x^4+1\right)^2+96x^4=\left(x^4+1\right)^2+16x^2\left(x^4+1\right)+64x^4-16x^2\left(x^4+1\right)+32x^4\)
\(=\left(x^4+1+8x^2\right)^2-16x^2\left(x^4+1-2x^2\right)=\left(x^4+8x^2+1\right)-\left(4x^3-4x\right)^2\)
\(=\left(x^4+4x^3+8x^2-4x+1\right)\left(x^4-4x^3+8x^2+4x+1\right)\)
\(2x^4+3x^3-7x^2-6x+8\)
\(=2x^4+5x^3-2x^2-8x-2x^3-5x^2+2x+8\)
\(=x\left(2x^3+5x^2-2x-8\right)-\left(2x^3+5x^2-2x-8\right)\)
\(=\left(x-1\right)\left(2x^3+5x^2-2x-8\right)\)
\(=\left(x-1\right)\left(2x^3+x^2-4x+4x^2+2x-8\right)\)
\(=\left(x-1\right)\left[x\left(2x^2+x-4\right)+2\left(2x^2+x-4\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(2x^2+x-4\right)\)
\(x^8+x^4-2\)
\(=\left(x^8-1\right)+\left(x^4-1\right)\)
\(=\left(x^4+1\right)\left(x^4-1\right)+\left(x^4-1\right)\)
\(=\left(x^4-1\right)\left(x^4+2\right)=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+2\right)\)