K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

a) \(2x\left(x-3\right)^2+5x\left(3-x\right)\)

\(=2x\left(x-3\right)^2-5x\left(x-3\right)\)

\(=\left(x-3\right)\left[2x\left(x-3\right)-5x\right]\)

\(=\left(x-3\right)\left(2x^2-6x-5x\right)\)

\(=\left(x-3\right)\left(2x^2-11x\right)\)

\(=x\left(x-3\right)\left(2x-11\right)\)

b) \(\left(x+3\right)^2-4\left(y^2-2y+1\right)\)

\(=\left(x+3\right)^2-2^2\left(y-1\right)^2\)

\(=\left(x+3\right)^2-\left[2\left(y-1\right)\right]^2\)

\(=\left[\left(x+3\right)-2\left(y-1\right)\right]\left[\left(x+3\right)+2\left(y-1\right)\right]\)

\(=\left(x+3-2y+2\right)\left(x+3+2y-2\right)\)

\(=\left(x-2y+5\right)\left(x+2y+1\right)\)

9 tháng 12 2018

a) \(2x.\left(x-3\right)^2+5x.\left(-x+3\right)=2x.\left(x-3\right)^2-5x.\left(x-3\right)\)

\(=\left(x-3\right).\left(2x^2-11x\right)=\left(x-3\right).x.\left(2x-11\right)\)

b) \(\left(x+3\right)^2-4.\left(y^2-2y+1\right)=\left(x+3\right)^2-2^2.\left(y-1\right)^2\)

 \(=\left(x+3\right)^2-\left[2.\left(y-1\right)\right]^2=\left(x-2y+1\right).\left(x+2y+5\right)\)

23 tháng 10 2016

đề hình như bị sai rồi bạn

23 tháng 10 2016

câu a phải là 3x+3y-x^2-2xy+y^2 chứ

9 tháng 7 2016

1)\(x^4+2x^3+x^2\)

=\(\left(x^4+x^3\right)+\left(x^3+x^2\right)\)đật nhân tử chung ra

=\(x^2\left(x+1\right)^2\)

2) pt => \(\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

=\(\left(x+y\right)^3-\left(x+y\right)\)

=\(\left(x+y\right)\left(\left(x+y\right)^2+1\right)\)

3)chia tất cả cho 5 pt => \(x^2-2xy+y^2-4x^2\)

=\(\left(x+y\right)^2-4z^2\)

=\(\left(x+y+2z\right)\left(x+y-2z\right)\)

4)pt => \(2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)

=\(2\left(x-y\right)-\left(x-y\right)^2\)

=\(\left(x-y\right)\left(2-x+y\right)\)

k chi nha

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

24 tháng 8 2017

a, x4 + 2x3 + x\(x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2=\left[x\left(x+1\right)\right]^2=\)\(\left(x^2+x\right)^2\)

b, x^3 - x + 3x^2y + 3xy^2+y^3-y

x^3 + 3x^2y + 3xy^2+y^3- x - y

(x+y)^3 - (x+y) 

=(x+y)[ (x+y)^2 - 1]

=(x+y)(x+y+1)(x+y-1)

c, 5x^2 - 10xy + 5y^2 - 20(c hỗ này có dấu gì ko???) z^2 

15 tháng 8 2016

x^2 + 3xy+2y^2 = x^2 +2xy+y^2+xy+y^2=(x+y)^2 + y(x+y)=(x+y)(x+2y)
 

21 tháng 11 2016

mẹ đi cày

10 tháng 3 2021

a) x3 + y3 - 3xy + 1

= ( x + y )3 - 3xy( x + y ) - 3xy + 1 

= [ ( x + y )3 + 1 ] - [ 3xy( x + y ) + 3xy ]

= ( x + y + 1 )( x2 + 2xy + y2 - x - y + 1 ) - 3xy( x + y + 1 )

= ( x + y + 1 )( x2 - xy + y2 - x - y + 1 )

b) ( 4 - x )5 + ( x - 2 )5 - 32

= [ -( x - 4 ) ]5 + ( x - 2 )5 - 32

Đặt t = x - 3

đthức <=> ( 1 - t )5 + ( 1 + t )5 - 32 ( chỗ này bạn dùng nhị thức Newton để khai triển nhé )

= 10t4 + 20t2 - 30

Đặt y = t2

đthức = 10y2 + 20y - 30

= 10y2 - 10y + 30y - 30

= 10y( y - 1 ) + 30( y - 1 )

= 10( y - 1 )( y + 3 )

= 10( t2 - 1 )( t2 + 3 )

= 10( t - 1 )( t + 1 )( t2 + 3 )

= 10( x - 3 - 1 )( x - 3 + 1 )[ ( x - 3 )2 + 3 ]

= 10( x - 4 )( x - 2 )( x2 - 6x + 12 )

10 tháng 3 2021

a,\(x^3+y^3-3xy+1\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)+1-3x^2y-3xy^2-3xy\)

\(=\left[\left(x+y\right)^3+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)

\(=\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1-3xy\right)\)

\(=\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)\)