Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x\left(x-3\right)^2+5x\left(3-x\right)\)
\(=2x\left(x-3\right)^2-5x\left(x-3\right)\)
\(=\left(x-3\right)\left[2x\left(x-3\right)-5x\right]\)
\(=\left(x-3\right)\left(2x^2-6x-5x\right)\)
\(=\left(x-3\right)\left(2x^2-11x\right)\)
\(=x\left(x-3\right)\left(2x-11\right)\)
b) \(\left(x+3\right)^2-4\left(y^2-2y+1\right)\)
\(=\left(x+3\right)^2-2^2\left(y-1\right)^2\)
\(=\left(x+3\right)^2-\left[2\left(y-1\right)\right]^2\)
\(=\left[\left(x+3\right)-2\left(y-1\right)\right]\left[\left(x+3\right)+2\left(y-1\right)\right]\)
\(=\left(x+3-2y+2\right)\left(x+3+2y-2\right)\)
\(=\left(x-2y+5\right)\left(x+2y+1\right)\)
a) \(2x.\left(x-3\right)^2+5x.\left(-x+3\right)=2x.\left(x-3\right)^2-5x.\left(x-3\right)\)
\(=\left(x-3\right).\left(2x^2-11x\right)=\left(x-3\right).x.\left(2x-11\right)\)
b) \(\left(x+3\right)^2-4.\left(y^2-2y+1\right)=\left(x+3\right)^2-2^2.\left(y-1\right)^2\)
\(=\left(x+3\right)^2-\left[2.\left(y-1\right)\right]^2=\left(x-2y+1\right).\left(x+2y+5\right)\)
1)\(x^4+2x^3+x^2\)
=\(\left(x^4+x^3\right)+\left(x^3+x^2\right)\)đật nhân tử chung ra
=\(x^2\left(x+1\right)^2\)
2) pt => \(\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
=\(\left(x+y\right)^3-\left(x+y\right)\)
=\(\left(x+y\right)\left(\left(x+y\right)^2+1\right)\)
3)chia tất cả cho 5 pt => \(x^2-2xy+y^2-4x^2\)
=\(\left(x+y\right)^2-4z^2\)
=\(\left(x+y+2z\right)\left(x+y-2z\right)\)
4)pt => \(2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
=\(2\left(x-y\right)-\left(x-y\right)^2\)
=\(\left(x-y\right)\left(2-x+y\right)\)
k chi nha
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\ = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\ = {a^2}{b^2} + 1 + {a^2} + {b^2}\\ = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\ = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\ = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\ = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\ = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\ = {x^3} + 2{x^2} + x + x + 1\\ = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\ = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\ = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\ = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\ = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\ = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\ = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\ = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\ = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\ = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\ = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\ = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\ = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array} |
a, x4 + 2x3 + x2 = \(x^2\left(x^2+2x+1\right)=x^2\left(x+1\right)^2=\left[x\left(x+1\right)\right]^2=\)\(\left(x^2+x\right)^2\)
b, x^3 - x + 3x^2y + 3xy^2+y^3-y
x^3 + 3x^2y + 3xy^2+y^3- x - y
(x+y)^3 - (x+y)
=(x+y)[ (x+y)^2 - 1]
=(x+y)(x+y+1)(x+y-1)
c, 5x^2 - 10xy + 5y^2 - 20(c hỗ này có dấu gì ko???) z^2
x^2 + 3xy+2y^2 = x^2 +2xy+y^2+xy+y^2=(x+y)^2 + y(x+y)=(x+y)(x+2y)
a) x3 + y3 - 3xy + 1
= ( x + y )3 - 3xy( x + y ) - 3xy + 1
= [ ( x + y )3 + 1 ] - [ 3xy( x + y ) + 3xy ]
= ( x + y + 1 )( x2 + 2xy + y2 - x - y + 1 ) - 3xy( x + y + 1 )
= ( x + y + 1 )( x2 - xy + y2 - x - y + 1 )
b) ( 4 - x )5 + ( x - 2 )5 - 32
= [ -( x - 4 ) ]5 + ( x - 2 )5 - 32
Đặt t = x - 3
đthức <=> ( 1 - t )5 + ( 1 + t )5 - 32 ( chỗ này bạn dùng nhị thức Newton để khai triển nhé )
= 10t4 + 20t2 - 30
Đặt y = t2
đthức = 10y2 + 20y - 30
= 10y2 - 10y + 30y - 30
= 10y( y - 1 ) + 30( y - 1 )
= 10( y - 1 )( y + 3 )
= 10( t2 - 1 )( t2 + 3 )
= 10( t - 1 )( t + 1 )( t2 + 3 )
= 10( x - 3 - 1 )( x - 3 + 1 )[ ( x - 3 )2 + 3 ]
= 10( x - 4 )( x - 2 )( x2 - 6x + 12 )
a,\(x^3+y^3-3xy+1\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)+1-3x^2y-3xy^2-3xy\)
\(=\left[\left(x+y\right)^3+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left[\left(x+y\right)^2-\left(x+y\right)+1\right]-3xy\left(x+y+1\right)\)
\(=\left(x+y+1\right)\left(x^2+2xy+y^2-x-y+1-3xy\right)\)
\(=\left(x+y+1\right)\left(x^2+y^2-xy-x-y+1\right)\)