K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

Bài làm:

a) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+5=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)

\(=\left(x^2+5x+5\right)^2\)

b) Tương tự như a phân tích và đặt ra được: \(t^2-1-24=t^2-25=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)

c) \(\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+11=t\)\(\Rightarrow\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

d) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

Đặt \(x^2+7x+11=t\)\(\Rightarrow\left(t-1\right)\left(t+1\right)-24=t^2-1-24=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

24 tháng 7 2020

Làm mẫu cho 1 vd:

a, (x+1)(x+2)(x+3)(x+4)+1

\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)(1)

Đặt \(y=x^2+5x+5\)

Khi đó ::

(1) = \(\left(y-1\right)\left(y+1\right)+1\)

\(=y^2-1+1=y^2\)

Thay vào ta được: \(\left(x^2+5x+5\right)^2\)

24 tháng 7 2020

a. \(x^5+x+1\)

\(=\left(x^5-x^2\right)+x^2+x+1\)

\(=x^2\left(x^3-1\right)+x^2+x+1\)

\(=x^2\left(x-1\right)\left(x^2+x+1\right)\)\(+x^2+x+1\)

\(=\left[x^2\left(x-1\right)+1\right]\left(x^2+x+1\right)\)

\(=\left(x^3-x^2+1\right)\left(x^2+x+1\right)\)

b.\(x^3+x^2+4\)

=\(x^3+2x^2-x^2-2x+2x+4\)

\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-x+2\right)\)
c.\(x^4+2x^2-24\)

\(=x^4+2x^3-2x^3-4x^2+6x^2+12x-12x-24\)

\(=x^3\left(x+2\right)-2x^2\left(x+2\right)+6x\left(x+2\right)-12\left(x+2\right)\)

\(=\left(x^3-2x^2+6x-12\right)\left(x+2\right)\)

\(=\left[x^2\left(x-2\right)+6\left(x-2\right)\right]\left(x+2\right)\)

\(=\left(x^2+6\right)\left(x-2\right)\left(x+2\right)\)

24 tháng 7 2020

a, x^5 + x + 1 = x ^ 5 - x^2 + (x ^2 + x + 1) = x^2 ( x-1) ( x^2+x+1) + ( x^2+x+1) = ( x^2+x+1 ) ( x^3-x^2+1)

c, x^4 + 2x^2 -24 = (x^4 +6x^2) - ( 4x^2+24) = x^2( x^2+6) - 4(x^2+6) = (x^2-4)(x^2 +6 ) = (x-2)(x+2)(x^2+6)

24 tháng 7 2020

a) (x-1)(2x+5)

b) (x+1)(x-5)

c) [(x+1)^2](x^2+x+1)

d) (x-1)(x^3-x-1)

e) (x+y)(x-y-1)

24 tháng 7 2020

a) 2x2 + 3x - 5 = 2x2 + 5x - 2x - 5 = x(2x + 5) - (2x + 5) = (x - 1)(2x + 5)

b) x2 - 4x  - 5 = x2 - 5x + x - 5 = x(x - 5) + (x - 5) =  (x + 1)(x - 5)

c) x4 + x3  + x + 1 = x3(x + 1) + (x + 1) = (x + 1)(x3 + 1) = (x + 1)2(x2 - x + 1)

d) x4 - x3 - x2 + 1 = x3(x - 1) - (x - 1)(x + 1) = (x - 1)(x3 - x - 1)

e) -x - y2 + x2 - y = -(x + y) + (x - y)(x + y) = (-1 + x - y)(x + y)

13 tháng 8 2018

a)  \(x^3-x^2-4=x^3-2x^2+x^2-2x+2x-4\)

\(=x^2\left(x-2\right)+x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+x+2\right)\)

b) \(x^4-64=\left(x^2-8\right)\left(x^2+8\right)\)

c)  \(81x^4+4y^4=\left(9x^2+2y^2\right)^2-36x^2y^2=\left(9x^2-6xy+2y^2\right)\left(9x^2+6xy+2y^2\right)\)

d)  \(x^7-x^2-1=\left(x^2-x+1\right)\left(x^5+x^4-x^2-x-1\right)\)

13 tháng 7 2016

a) \(x^3\left(x^2-7\right)^2-36x=x\left[\left(x^3-7x\right)^2-6^2\right]\)

\(=x\left(x^3-7x-6\right)\left(x^3-7x+6\right)\)

\(x\left[\left(x-3\right)\left(x+1\right)\left(x+2\right)\right].\left[\left(x+3\right)\left(x-2\right)\left(x-1\right)\right]\)

\(=\left(x-3\right)\left(x-2\right)\left(x-1\right).x.\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Không pt được.

c) Không pt được.

19 tháng 7 2018

a)  \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)

b) mk chỉnh lại đề

 \(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)

c)  \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)

d)  \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

19 tháng 7 2018

ồ cuk dễ nhỉ

Nếu các bn thích thì ...........

cứ cho NTN này nhé !

 
8 tháng 4 2020

chị học nhanh vĩa 

dạy em học với

27 tháng 10 2017

Tìm X

a) \(2x+\dfrac{3}{24}=3x-\dfrac{1}{32}\)

\(\Leftrightarrow\left(2x+\dfrac{3}{24}\right)-\left(3x-\dfrac{1}{32}\right)=0\)

\(\Leftrightarrow2x+\dfrac{3}{24}-3x+\dfrac{1}{32}=0\)

\(\Leftrightarrow\left(\dfrac{3}{24}+\dfrac{1}{32}\right)+\left(2x-3x\right)=0\)

\(\Leftrightarrow\dfrac{5}{32}-x=0\)

\(\Leftrightarrow x=\dfrac{5}{32}\)

17 tháng 4 2018

trắc nghiệm

câu 1: c

câu 2: B

câu 3: D

câu 4: A

câu 5: C

câu 6: D

tự luận

câu 1:

a)M(x) = x4 + 2x2 + 1

b) M(x) + N(x) = -4x4 + x3 + 5x2 - 2

M(x) - N(x) = 6x4 - x3 - x2 + 4

c) \(M\left(-\dfrac{1}{2}\right)=\left(-\dfrac{1}{2}\right)^4+2\left(-\dfrac{1}{2}\right)^2+1=\dfrac{25}{16}\)