Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+x\right)^2+4x^2+4x-12\)
\(=x^4+2x^3+5x^2+4x-12\)
\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)
\(=x^3.\left(x-1\right)+3x^2.\left(x-1\right)+8x.\left(x-1\right)+12.\left(x-1\right)\)
\(=\left(x-1\right).\left(x^3+3x^2+8x+12\right)=\left(x-1\right).\left(x+2\right).\left(x^2+x+6\right)\)
p/s: sai sót bỏ qua
a) 12x3 + 4x2 + 9x + 3 = 4x2(3x + 1) + 3(3x + 1) = (4x2 + 3)(3x + 1)
b) x3 + 2x2 - x - 2 = x2(x + 2) - (x + 2) = (x2 - 1(x + 2) = (x - 1)(x + 1)(x + 2)
c) a3 + (a - b)3 = (a + a - b)[a2 - a(a - b) + (a - b)2] = (2a - b)(a2 - a2 + ab + a2 - 2ab + b2)
= (2a - b)(a2 - ab + b2)
a) 12x3 + 4x2 + 9x + 3
= 4x2(3x + 1) + 3(3x + 1)
= (4x2 + 3)(3x + 1)
b) x3 + 2x2 - x - 2
= x2(x + 2) - (x + 2)
= (x2 - 1)(x + 2)
c) a3 + (a - b)3
= a3 - a2(a - b) + a(a - b)2 + (a - b)a2 - (a - b)2a + (a - b)3
= a[(a2 - a(a - b) + (a - b)2] + (a - b)[a2 - a(a - b) + (a - b)2]
= (a + a - b)[(a2 - a(a - b) + (a - b)2]
a, Ta có: \(x^3+2x^2y+xy^2-4x\)
\(=x\left(x^2+2xy+y^2-4\right)\)
\(=x\left[\left(x+y\right)^2-2^2\right]\)
\(=x\left(x+y+2\right)\left(x+y-2\right)\)
b, Ý này dễ lắm, cậu tự làm nha!!!
\(x^3+4x^2+4x+3\)
\(=x^3+3x^2+x^2+3x+x+3\)
\(=x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2+x+1\right)\)
\(x^2-y^2+4y-4\)
\(=x^2-\left(y^2-4y+4\right)\)
\(=x^2-\left(y-2\right)^2\)
\(=\left(x-y+2\right)\left(x+y-2\right)\)
\(x^4+x^3y-xy^3-y^4\)
\(=x^3\left(x+y\right)-y^3\left(x+y\right)\)
\(=\left(x+y\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
Chúc bạn học tốt.
\(ax^3-3ax^2+3ax-a\)
\(=a\left(x^3-3x^2+3x-1\right)\)
\(=a\left(x-1\right)^3.\)
\(ax^3-3ax^2+3ax-a\)
\(=a\left(x^3-3x^2+3x-1\right)\)
\(=a\left(x-1\right)^3\)
\(2x^2-3ax-9a^2\)
\(=2x^2-6ax+3ax-9a^2\)
\(=2x\left(x-3a\right)+3\left(x-3a\right)\)
\(=\left(x-3a\right)\left(2x+a\right)\)
\(2x^2-17xy-9y^2\)
\(=2x^2+xy-18xy-9y^2\)
\(=2x\left(2x+y\right)-9y\left(2x+y\right)\)
\(=\left(2x+y\right)\left(2x-9y\right)\)
\(a^3-a^2x-ay+xy\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a-x\right)\left(a^2-y\right)\)
\(4x^2-y^2+4x+1\)
\(=\left(4x^2+4x+1\right)-y^2\)
\(=\left(2x+1\right)^2-y^2=\left(2x-y+1\right)\left(2x+y+1\right)\)
\(x^3-x+y^3-y\)
\(=\left(x^3+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)
a)a3 - a2x - ay +xy
=(a3 - a2x) - (ay - xy)
=a2(a-x) - y(a-x)
=(a-x).(a2 - y)
a )\(x^2-2x-4y^2-4y=\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)\)
\(=\left(x-1\right)^2-\left(2y+1\right)^2=\left(x-2y-2\right)\left(x+2y\right)\)
b )\(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+2x+2\right)\left(x^2-2\right)\)
c ) \(x^2\left(1-x^2\right)-4-4x^2=x^2-x^4-4-4x^2\)
\(=x^2-\left(x^2+2\right)^2=\left(x-x^2-2\right)\left(x^2+x+2\right)\)
a) 4x2 +4x+3=4x2 +4x+4-1=(2x-2)2 - 1=(2x-2-1)(2x-2+1)=(2x-3)(2x-1)
a) \(4x^2+4x+3\)
\(=\left(4x^2+4x+4\right)-1\)
\(=\left(2x+2\right)^2-1^2\)
\(=\left(2x+2+1\right)\left(2x+2-1\right)\)
\(\left(2x+3\right)\left(2x+1\right)\)
c) \(x^2-a^2+2ab-b^2\)
\(=x^2-\left(a-b\right)^2\)
\(=\left(x+a-b\right)\left(x-a+b\right)\)