Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(x^4y^4+x^2y^2+1\)
\(=\left(x^4y^4+2x^2y^2+1\right)-x^2y^2\)
\(=\left(x^2y^2+1\right)^2-\left(xy\right)^2\)
\(=\left(x^2y^2-xy+1\right)\left(x^2y^2+xy+1\right)\)
c) \(4x^4+1\)
\(=\left(4x^4+4x^2+1\right)-4x^2\)
\(=\left(2x^2+1\right)^2-\left(2x\right)^2\)
\(=\left(2x^2-2x+1\right)\left(2x^2+2x+1\right)\)
phân tích đa thức thành nhân tử
a) 4x^2+8xy-3x-6y
b)x^4y-3x^3y^2+3x^2y^3+xy^4
c)x^3-5x^2-14x
d)x^4+4y^4
\(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)
\(x^4y-3x^3y^2+3x^2y^3-xy^4=xy\left(x^3-3x^2y+3xy^2-y^3\right)=xy\left(x-y\right)^3\)
\(x^3-5x^2-14x=x\left(x^2-5x-14\right)=x\left(x^2-7x+2x-14\right)=x\left[x\left(x-7\right)+2\left(x-7\right)\right]=x\left(x-7\right)\left(x+2\right)\)
\(x^4+4y^4=\left(x^2\right)^2+2\times x^2\times2y^2+\left(2y^2\right)^2-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
a)x2-2x-4y2-4y
=x2-2xy-2x+2xy-4y2-4y
=x(x-2y-2)+2y(x-2y-2)
=(x-2y-2)(x+2y)
c)x4+2x3-4x-4
=x4+2x3+2x2-2x2-4x-4
=x2(x2+2x+2)-2(x2+2x+2)
=(x2-2)(x2+2x+2)
a,x2-4xy+4y2
=(x-2y2
b,4x4+9y2-12x2y
=(2x2)2+(3y)2-12x2y
(2x2-3y)
11x^2+13xy+2y^2
=2(x+y)^2+9x^2+9xy
=2(x+y)^2+9x(x+y)
=(x+y)(11x+2y)
Làm nốt câu B cho bạn shitbo
\(x^4+4y^4\)
\(=\left(x^2\right)^2+\left(2y^2\right)^2\)
\(=\left(x^2\right)^2+\left(2y^2\right)^2+4x^2y^2-4x^2y^2\)
\(=\left[\left(x^2\right)^2+\left(2y^2\right)^2+4x^2y\right]-4x^2y^2\)
\(=\left(x^2+2y^2\right)^2-4x^2y^2\)
\(=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)
\(\Rightarrow x^4+4y^4\)\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)