Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{a) }x^3y^3+x^2y^2+4\)
\(=x^3y^3+2x^2y^2-x^2y^2+4\)
\(=\left(x^3y^3+2x^2y^2\right)-\left(x^2y^2-4\right)\)
\(=x^2y^2\left(xy+2\right)-\left(xy+2\right)\left(xy-2\right)\)
\(=\left(xy+2\right)\left(x^2y^2-xy+2\right)\)
\( {c)}\)\(x^4+x^3+6x^2+5x+5\)
\(=\left(x^4+x^3+x^2\right)+\left(5x^2+5x+5\right)\)
\(=x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2+5\right)\)
\({d)}\)\(x^4-2x^3-12x^2+12x+36\)
\(=\left(x^4-2x^3-6x^2\right)-\left(6x^2-12x-36\right)\)
\(=x^2\left(x^2-2x-6\right)-6\left(x^2-2x-6\right)\)
\(=\left(x^2-2x-6\right)\left(x^2-6\right)\)
Câu b sai đề thì phải ah
b) x3y3 + x2y2+ 4 = x3y3- 4xy + (xy)2- 2xy.2 + 22 = xy [ (xy)^2 - 2^2 ] + ( xy - 2)^2
= xy(xy-2)(xy+2)+ (xy-2)^2
= (xy-2) [ xy(xy+2) + ( xy-2) ]
= (xy-2) [ (xy)2 + 2xy + xy - 3 ]
= ( xy - 3) [ (xy)2 + 3xy - 3]
3) (chưa bik làm)
4) x4 +x3 + 6x2 +5x +5
= x4 +x3 + x2 + 5x2 + 5x +5
= x2( x2+x+ 1 ) + 5( x2+x+ 1 )
= ( x2+ 5 ) ( x2+x+ 1 )
5) x4 - 2x3 - 12x2 +12x + 36
= x4 - 2x3 - 6x2 - 6x2 + 12x + 36=
x2 ( x2 - 2x - 6) - 6 ( x2 - 2x - 6)
= (x^2 - 6) ( x2 - 2x - 6) 6) x8y8 + x4y4 + 1 = \(\left[\left(xy\right)^4\right]^2+2x^4y^4+1-x^4y^4\)=\(\left[\left(xy\right)^4+1\right]^2-\left[\left(xy\right)^2\right]^2\)
= \(\left(x^4y^4+1-x^2y^2\right)\left(x^4y^4+1+x^2y^2\right)\)
( mik ko bik đúng hay sai đâu nha) mik thấy nó thành nhân tử thì mik tách thôi
a)18x2-12x
=3x(6x-4)
b)3x2-11x+6
=x(3x-11+6)
=x(3x-5)
c)x3+6x2+11x+6
=x2(x+23
\(18x^2-12x\)
\(=6x\left(3x-2\right)\)
\(3x^2-11x+6\)
\(=3x^2-9x-2x+6\)
\(=3x\left(x-3\right)-2\left(x-3\right)\)
\(=\left(x-3\right)\left(3x-2\right)\)
a) \(x^4-9x^2\)
\(=x^2\left(x^2-9\right)\)
\(=x^2\left(x-3\right)\left(^{ }x+3\right)\)
b) \(3x^2-12x+12\)
\(=3x\left(x^2-4x+4\right)\)
\(=3x\left(x-2\right)^2\)
c) \(x^2+5x+6\)
\(=x^2+3x+2x+6\)
\(=x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
x4 - 9x2
= x4 - ( 3x )2
= ( x2 - 3x ) ( x2 + 3x )
b) 3x3 - 12x2 + 12x
= 3x3 - 6x2 - 6x2 + 12x
= 3x2( x - 2 ) - 6x ( x - 2 )
= ( 3x2 - 6x ) ( x - 2 )
= 3x ( x - 2 ) ( x - 2 )
= 3x ( x- 2 )2
c) x2 + 5x + 6
= x2 + 2x + 3x + 6
= x ( x + 2 ) + 3 ( x + 2 )
= ( x + 3 ) ( x + 2 )
a) \(x^3-x^2-4=x^3-2x^2+x^2-4=x^2\left(x-2\right)+\left(x-2\right)\left(x+2\right)=\left(x-2\right)\left(x^2+x+2\right)\)
b) \(x^3-5x^2+8x-4=x^3-x^2-4x^2+4x+4x-4=x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
c) \(2x^3-12x^2+17x-2=2x^3-4x^2-8x^2+16x+x-2=2x^2\left(x-2\right)-8x\left(x-2\right)+\left(x-2\right).\)
\(=\left(x-2\right)\left(2x^2-8x+1\right)\)
d) \(2x^4+x^3-22x^2+15x+36=2x^4+2x^3-x^3-x^2-21x^2-21x+36x+36.\)
\(=2x^3\left(x+1\right)-x^2\left(x+1\right)-21x\left(x+1\right)+36\left(x+1\right)\)
\(=\left(x+1\right)\left(2x^3-x^2-21x+36\right)\)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
a: \(=6x^3-12x^2+x^2-2x+x-2\)
\(=\left(x-2\right)\left(6x^2+x+1\right)\)
b: \(=3x^4+3x^3-x^3-x^2-7x^2-7x+5x+5\)
\(=\left(x+1\right)\left(3x^3-x^2-7x+5\right)\)
\(=\left(x+1\right)\left(3x^3-3x^2+2x^2-2x-5x+5\right)\)
\(=\left(x+1\right)\left(x-1\right)\left(3x^2+2x-5\right)\)
\(=\left(x-1\right)^2\cdot\left(x+1\right)\left(3x+5\right)\)
c: \(=4x^3+x^2+4x^2+x+4x+1\)
\(=\left(4x+1\right)\left(x^2+x+1\right)\)
a)\(x^3+x+2=x^3+1+x+1\)
\(=\left(x+1\right)\left(x^2-x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x+2\right)\)
b)\(x^3+3x^2-4=x^3-1+3x^2-3\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3\left(x^2-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1\right)+3\left(x-1\right)\left(x+1\right)\)
\(=\left(x-1\right)\left[x^2+x+1+3x+3\right]\)
\(=\left(x-1\right)\left(x+2\right)^2\)