Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2+2xy-9+y^2\)
\(=x^2+2xy+y^2-9\)
\(=\left(x+y\right)^2-9\)
\(=\left(x+y+9\right)\left(x+y-9\right)\)
\(b,x^4+64\)
\(=\left(x^2\right)^2+16x^2+64-16x^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2+8-4x\right)\left(x^2+4x+8\right)\)
a) \(x^2-xy+x-y\)
\(=\left(x^2-xy\right)+\left(x-y\right)\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x+1\right)\left(x-1\right)\)
b) \(2xy-x^2-y^2+16\)
\(=16-\left(x^2-2xy+y^2\right)\)
\(=4^2-\left(x-y\right)^2\)
\(=\left(4-x+y\right)\left(4+x-y\right)\)
c) \(x^2-6x-16\)
\(=x^2-6x+9-25\)
\(=\left(x^2-6x+9\right)-25\)
\(=\left(x-3\right)^2-5^2\)
\(=\left(x-3-5\right)\left(x-3+5\right)\)
\(=\left(x-8\right)\left(x+2\right)\)
a. 2xy - x2 - y2 + 16
=(2xy-x2-y2)+16
=16-(x-y)2
=(4+x-y)(4-x+y)
b. x2 + x - 6
=x2+3x-2x-6
=x(x+3)-2(x+3)
=(x-2)(x+3)
c. x2 + 5x + 6
=x2+3x+2x+6
=x(x+3)+2(x+3)
=(x+2)(x+3)
\(Dat:x^2+x=a\Rightarrow....=a^2-2a-15=\left(a-1\right)^2-4^2=\left(a+3\right)\left(a-7\right)\)
\(=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
\(Dat:x+y=a\Rightarrow....=a^2-a-12=\left(a+3\right)\left(a-4\right)=\left(x+y+3\right)\left(x+y-4\right)\)
a) A= \(\left(x^2+x\right)^2-2\left(x^2+x\right)-15\)
Đặt \(x^2+x=a\) .
Khi đó : \(A=a^2-2a-15=a^2-5a+3a-15\)\(=a\left(a-5\right)+3\left(a-5\right)=\left(a+3\right)\left(a-5\right)\)
Mà \(a=x^2+x\) nên \(A=\left(x^2+x+3\right)\left(x^2+x-5\right)\)
b) B = \(x^2+2xy+y^2-x-y-12\) \(=\left(x+y\right)^2-\left(x+y\right)-12\)
Đặt x+y = z.
Khi đó : \(B=z^2-z-12=z^2-4z+3z-12=z\left(z-4\right)+3\left(z-4\right)\)\(=\left(z+3\right)\left(z-4\right)\)
Mà z = x+y nên B = (x+y+3)(x+y-4)
\(x^2+y^2-1-2xy\)
\(=\left(x-y\right)^2-1\)
\(=\left(x-y+1\right)\left(x-y-1\right)\)
a.\(2xy^2-x^2y-y^3=y\left(2xy-x^2-y^2\right)\)
\(=-y\left(x^2-2xy+y^2\right)\)
\(=-y\left(x-y\right)^2\)
b.\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
bài 1, bạn tự làm nhé đặt chia đi bạn
bài 2
a,\(\left(x^2-2xy+y^2\right)+2\left(x-y\right)=\left(x-y\right)^2+2\left(x-y\right)=\left(x-y\right)\left(x-y+2\right)\)
\(b,=a^2-2a-5a+10=a\left(a-2\right)-5\left(a-2\right)=\left(a-2\right)\left(a-5\right)\)
\(a,-x-y^2+x^2-y\)
\(=-\left(x+y\right)+x^2-y^2\)
\(=-\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x+y-1\right)\)
\(b,x^2-y^2-2xy+y^2\)
\(=\left(x-y\right)^2-y^2\)
\(=\left(x-y-y\right)\left(x-y+y\right)=\left(x-2y\right)x\)
\(d,x^6-y^6\)
\(=\left(x^3\right)^2-\left(y^3\right)^2=\left(x^3-y^3\right)\left(x^3+y^3\right)\)