K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

\(x^4+64+16x^2-16x^2\)

\(=\left(x^2+8\right)^2-16x^2\)

\(=\left(x^2-4x+8\right)\left(x^2+4x+8\right)\)

hk tốt

20 tháng 7 2018

a)  \(4x^3-4x^2=4x^2\left(x-1\right)\)

b)  mk chỉnh đề

\(9x^2y^2+15x^2y-21xy^2=3xy\left(3xy+5x-7y\right)\)

c)   \(4x^2\left(x-2y\right)-20x\left(2y-x\right)=4x\left(x-2y\right)\left(x+5\right)\)

d)  \(4x^2-4x+1=\left(2x-1\right)^2\)

e)  bạn ktra lại đề

f)  \(16x^2+24xy+9y^2=\left(4x+3y\right)^2\)

1 tháng 8 2019

\(a,3x^3-6x^2+3x\)

\(=3x\left(x^2-2x+1\right)\)

\(=3x\left(x-1\right)^2\)

\(b,16x^2y-4xy^2-4x^3\)

\(=-4x\left(x^2-4xy+4y^2-3y^2\right)\)

\(=-4x\left(x-2y+y\sqrt{3}\right)\left(x-2y-y\sqrt{3}\right)\)

a) Ta có: \(4x^2-28xy+49y^2\)

\(=\left(2x\right)^2-2\cdot2x\cdot7y+\left(7y\right)^2\)

\(=\left(2x-7y\right)^2\)

b) Ta có: \(x^2+8xy+16y^2\)

\(=x^2+2\cdot x\cdot4y+\left(4y\right)^2\)

\(=\left(x+4y\right)^2\)

c) Ta có: \(x^2-12x+36\)

\(=x^2-2\cdot x\cdot6+6^2\)

\(=\left(x-6\right)^2\)

17 tháng 7 2021

\(\left(2x-7y\right)^2\)

\(\left(6-x\right)^2\)

6 tháng 12 2017

a) \(=\left(x-2y\right)\left(x^2+5x\right)\)

b) \(=\left(x-1\right)\left(x^2+2x+1\right)=\left(x-1\right)\left(x+1\right)^2\)

c) \(=\left(x^2+1-2x\right)\left(x^2+1+2x\right)\)

    \(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)

    \(=\left(x-1\right)^2\left(x+1\right)^2\)

d) \(=3\left(x+3\right)-\left(x-3\right)\left(x+3\right)\)

     \(=\left(x+3\right)\left(3-x+3\right)\)

     \(=\left(x+3\right)\left(6-x\right)\)

e) \(=\left(x^2-\frac{1}{3}x\right)\left(x^2+\frac{1}{3}x\right)\)

f) \(=2x\left(x-y\right)-16\left(x-y\right)\)

    \(=2\left(x-y\right)\left(x-8\right)\)

  

17 tháng 12 2023

Bài 1

a) 5x²y - 20xy²

= 5xy(x - 4y)

b) 1 - 8x + 16x² - y²

= (1 - 8x + 16x²) - y²

= (1 - 4x)² - y²

= (1 - 4x - y)(1 - 4x + y)

c) 4x - 4 - x²

= -(x² - 4x + 4)

= -(x - 2)²

d) x³ - 2x² + x - xy²

= x(x² - 2x + 1 - y²)

= x[(x² - 2x+ 1) - y²]

= x[(x - 1)² - y²]

= x(x - 1 - y)(x - 1 + y)

= x(x - y - 1)(x + y - 1)

e) 27 - 3x²

= 3(9 - x²)

= 3(3 - x)(3 + x)

f) 2x² + 4x + 2 - 2y²

= 2(x² + 2x + 1 - y²)

= 2[(x² + 2x + 1) - y²]

= 2[(x + 1)² - y²]

= 2(x + 1 - y)(x + 1 + y)

= 2(x - y + 1)(x + y + 1)

17 tháng 12 2023

Bài 2:

a: \(x^2\left(x-2023\right)+x-2023=0\)

=>\(\left(x-2023\right)\left(x^2+1\right)=0\)

mà \(x^2+1>=1>0\forall x\)

nên x-2023=0

=>x=2023

b: 

ĐKXĐ: x<>0

\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)

=>\(-x\left(x-4\right)+2x^2-4x-9=0\)

=>\(-x^2+4x+2x^2-4x-9=0\)

=>\(x^2-9=0\)

=>(x-3)(x+3)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

c: \(x^2+2x-3x-6=0\)

=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)

=>\(x\left(x+2\right)-3\left(x+2\right)=0\)

=>(x+2)(x-3)=0

=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

d: 3x(x-10)-2x+20=0

=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)

=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)

=>\(\left(x-10\right)\left(3x-2\right)=0\)

=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)

Câu 1:

a: \(5x^2y-20xy^2\)

\(=5xy\cdot x-5xy\cdot4y\)

\(=5xy\left(x-4y\right)\)

b: \(1-8x+16x^2-y^2\)

\(=\left(16x^2-8x+1\right)-y^2\)

\(=\left(4x-1\right)^2-y^2\)

\(=\left(4x-1-y\right)\left(4x-1+y\right)\)

c: \(4x-4-x^2\)

\(=-\left(x^2-4x+4\right)\)

\(=-\left(x-2\right)^2\)

d: \(x^3-2x^2+x-xy^2\)

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left(x-1-y\right)\left(x-1+y\right)\)

e: \(27-3x^2\)

\(=3\left(9-x^2\right)\)

\(=3\left(3-x\right)\left(3+x\right)\)

f: \(2x^2+4x+2-2y^2\)

\(=2\left(x^2+2x+1-y^2\right)\)

\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)

\(=2\left[\left(x+1\right)^2-y^2\right]\)

\(=2\left(x+1+y\right)\left(x+1-y\right)\)

19 tháng 8 2019

a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)

\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)

c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)

19 tháng 8 2019

b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)

29 tháng 9 2018

Ý a) sại đề bài ak??

29 tháng 9 2018

       \(16x^4+y^4+4x^2y^2\)

\(=\left(4x^2\right)^2+2.4x^2.y^2+\left(y^2\right)^2-4x^2y^2\)

\(=\left(4x^2+y^2\right)-\left(2xy\right)^2\)

\(=\left(4x^2-2xy+y^2\right)\left(4x^2+2xy+y^2\right)\)

      \(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

      \(x^3+x^2+4\)

\(=x^3+2x^2-x^2-2x+2x+4\)

\(=x^2\left(x+2\right)-x\left(x+2\right)+2\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-x+2\right)\)

25 tháng 8 2019

\(4x^4-16-4x^2-16x\)

\(=4x^2\left(x^2-1\right)-16\left(1+x\right)\)

\(=4x^2\left(x+1\right)\left(x-1\right)-16\left(x+1\right)\)

\(=\left(x+1\right)\left[4x^2\left(x-1\right)-16\right]\)

\(=\left(x+1\right)4\left[x^2\left(x-1\right)-4\right]\)

25 tháng 8 2019

Nguyễn Văn Tuấn AnhNs r, không biết thì not làm

\(4x^4-16-4x^2-16x\)

\(=4x^2\left(x^2-1\right)-16\left(x+1\right)\)

\(=4x^2\left(x-1\right)\left(x+1\right)-16\left(x+1\right)\)

\(=\left(x+1\right)\left[4x^2\left(x-1\right)-16\right]\)

\(=4\left(x+1\right)\left[x^2\left(x-1\right)-4\right]\)

\(=4\left(x+1\right)\left[x^3-x^2-4\right]\)

\(=4\left(x+1\right)\left[x^3+x^2+2x-2x^2-2x-4\right]\)

\(=4\left(x+1\right)\left[x\left(x^2+x+2\right)-2\left(x^2+x+2\right)\right]\)

\(=4\left(x+1\right)\left(x-2\right)\left(x^2+x+2\right)\)