Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chuyển về dạng nguyên thể rồi tính thể chất khối lượng sau đó quay về đang tìm mũ của nhiều số làm ra rồi thì dễ lắm bạn ạ k minh nha
a)\(\left(x^2-2\right)\left(x^2+2x+2\right)\)
b)\(\left(x-1\right)\left(2x+1\right)\left(3x+7\right)\)
c)\(-2\left(x-4\right)\left(2x+1\right)\)
d)\(\left(x-5\right)\left(4x+1\right)\)
e)\(3\left(x-2\right)\left(3x-2\right)\)
g)\(2\left(a-b\right)^2\)
h)\(\left(xy-3\right)\left(5y^2-2z\right)\)
i)\(\left(4x+1\right)\left(2x-y\right)\)
l)\(abc^2\left(b-a\right)\left(b+c\right)\)
m)\(\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
2
a
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^3=\left(-z\right)^3\)
\(\Rightarrow x^3+y^3+3x^2y+3xy^2=-z^3\)
\(\Rightarrow x^3+y^3+z^3=3xy\left(x+y\right)=3xyz\)
b
Đặt \(a-b=x;b-c=y;c-a=z\Rightarrow x+y+z=0\)
Ta có bài toán mới:Cho \(x+y+z=0\).Phân tích đa thức thành nhân tử:\(x^3+y^3+z^3\)
Áp dụng kết quả câu a ta được:
\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)
a,\(\left(a-b\right)\left(a+2b\right)-\left(b-a\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b\right)+\left(a-b\right)\left(2a-b\right)-\left(a-b\right)\left(a+3b\right)\)
\(=\left(a-b\right)\left(a+2b+2a-b-a-3b\right)\)
\(=\left(a-b\right)\left(2a-2b\right)\)
\(=\left(a-b\right)2\left(a-b\right)\)
\(=2\left(a-b\right)^2\)
b,\(\left(x+y\right)\left(2x-y\right)+\left(2x-y\right)\left(3x-y\right)-\left(y-2x\right)\)
\(=\left(x+y\right)\left(2x-y\right)+\left(2x-y\right)\left(3x-y\right)+\left(2x-y\right)\)
\(=\left(2x-y\right)\left(x+y+3x-y+1\right)\)
\(=\left(2x-y\right)\left(4x+1\right)\)
c,\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2y-x^2z+y^2z-y^2x+z^2\left(x-y\right)\)
\(=x^2y-y^2x-x^2z+y^2z+z^2\left(x-y\right)\)
\(=xy\left(x-y\right)-z\left(x^2-y^2\right)+z^2\left(x-y\right)\)
\(=xy\left(x-y\right)-z\left(x-y\right)\left(x+y\right)+z^2\left(x-y\right)\)
\(=\left(x-y\right)\left(xy-zx-zy+z^2\right)\)
\(=\left(x-y\right)\left(y-z\right)\left(x-z\right)\)
\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)
\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)
a(b3 - c3) + b(c3 - a3) + c(a3 - b3)
= ab3 - ac3 + bc3 - ba3 + ca3 - cb3
= b(c3 - a3 - cb2 + ab2) - ac(c2 - a2)
= b[(c - a)(a2 + ac + c2) - b2(c - a)] - ac(c - a)(c + a)
= (c - a)[a2b + abc + bc2 - b3 - ac2 - a2c]
= (c - a)[b(c2 - b2) - ac(c - b) - a2(c -b)]
= (c - a)(c - b)[b(b + c) - ac - a2] = (c - a)(c - b)(b2 + bc - ac - a2]
= (c - a)(c - b)[(b - a)(b + a) + c(b - a)]
= (c - a)(c - b)(b - a)(a + b + c)
(a + b)3 - (a - b)3
= (a + b - a + b)[(a + b)2 + (a + b)(a - b) + (a - b)2]
= 2b(a2 + 2ab + b2 + a2 - b2 + a2 - 2ab + b2]
= 2b(3a2 + b2]
x3 - 3x2 + 3x - 1 - y3
= (x - 1)3 - y3
= (x - y - 1)(x2 - 2x + 1 + xy - y + y2]
xm + 4 + xm + 3 - x - 1
= xm + 3(x +1) - (x + 1)
= (xm + 3 - 1)(x + 1)
= (x - 1)[xm + 2 + xm + 1 + .... + 1](x + 1)
..........................
a)\(a^4+a^3+a^3b+a^2b=\left(a^4+a^3b\right)+\left(a^3+a^2b\right)\)
\(=a^3\left(a+b\right)+a^2\left(a+b\right)\)
\(=\left(a^3+a^2\right)\left(a+b\right)\)
\(=a^2\left(a+1\right)\left(a+b\right)\)
b)\(\left(x-y+4\right)^2-\left(2x+3y-1\right)^2\)
\(=\left[\left(x-y+4\right)-\left(2x+3y-1\right)\right]\left[\left(x-y+4\right)+\left(2x+3y-1\right)\right]\)
\(=\left(x-y+4-2x-3y+1\right)\left(x-y+4+2x+3y-1\right)\)
\(=\left(-x-4y+5\right)\left(4x+2y+3\right)\)
c)\(x^2\left(y-z\right)+y^2\left(z-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)+y^2\left(z-y+y-x\right)+z^2\left(x-y\right)\)
\(=x^2\left(y-z\right)-y^2\left(y-z\right)-y^2\left(x-y\right)+z^2\left(x-y\right)\)
\(=\left(y-z\right)\left(x^2-y^2\right)-\left(x-y\right)\left(y^2-z^2\right)\)
\(=\left(y-z\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)\left(y-z\right)\left(y+z\right)\)
\(=\left(y-z\right)\left(x-y\right)\left(x+y-y-z\right)\)
\(=\left(y-z\right)\left(x-y\right)\left(x-z\right)\)