Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
$8x^2-12xy+4y^2-2x-1=(9x^2-12xy+4y^2)-(x^2+2x+1)$
$=(3x-2y)^2-(x+1)^2=(3x-2y-x-1)(3x-2y+x+1)$
$=(2x-2y-1)(4x-2y+1)$
b)
$4x^4+16=(2x^2)^2+4^2+2.2x^2.4-16x^2$
$=(2x^2+4)^2-(4x)^2=(2x^2+4-4x)(2x^2+4+4x)=4(x^2-2x+2)(x^2+2x+2)$
c) $625t^9+75t^3+9$: biểu thức không phân tích được thành nhân tử.
d)
$(5-y)^6-2(125-75y+15y^2-y^3)+1$
$=(5-y)^6-2(5-y)^3+1=[(5-y)^3-1]^2=(5-y-1)^2[(5-y)^2+(5-y)+1]^2$
$=(y-4)^2(y^2-11y+31)^2$
b) \(64x^3+1=\left(4x+1\right)\left(16x^2-4x+1\right)\)\
c) \(x^3y^6z^9-125=\left(xy^2z^3-5\right)\left(x^2y^4z^6+5xy^2z+25\right)\)
d) \(27x^6-8x^3=x^3\left(27x^3-8\right)=x^3\left(3x-2\right)\left(9x^2+6x+4\right)\)
e) \(x^6-y^6=\left(x^3-y^3\right)\left(x^3+y^3\right)=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
64x3 + 1
= ( 4x )3 + 1
= ( 4x + 1 ) ( 16x2 - 4x + 1 )
Hằng đẳng thức 6 : A3 + B3
27x6 - 8x3
= ( 3x2)3 + ( 2x )3
= ( 3x + 2x ) ( 9x2 - 6x + 4x2 )
HĐT 6
x6 - y6
= ( x2 )3 - ( y2 )3
= ( x2 - y2 ) ( x4 + x2y2 + y4 )
HĐT 7 : A3 - B3
x3y6z9 + 1
= ( xy2z3)3 + 1
= ( xy2z3 + 1 ) ( x2y4z6 + zy2z3 + 1 )
HĐT 6
a ) 36x2 - ( 3x - 2 )2
= ( 6x - 3x + 2 ) ( 6x + 3x - 2 )
= ( 3x + 2 ) ( 9x - 2 )
b ) 16.( 4x + 5 )2 - 25. ( 2x + 2 )2
= [ 4.( 4x + 5 ) + 5. ( 2x + 2 ) ] [ 4 .( 4x + 5 ) - 5. ( 2x + 2 ) ]
= ( 16x + 5 + 10x + 10 ) ( 16x + 5 - 10x - 10 )
= ( 26x + 15 ) ( 6x - 5 )
a ) 36x2 - ( 3x - 2 )2
= ( 6x - 3x + 2 ) ( 6x + 3x - 2 )
= ( 3x + 2 ) ( 9x - 2 )
b ) 16.( 4x + 5 )2 - 25. ( 2x + 2 )2
= [ 4.( 4x + 5 ) + 5. ( 2x + 2 ) ] [ 4 .( 4x + 5 ) - 5. ( 2x + 2 ) ]
= ( 16x + 5 + 10x + 10 ) ( 16x + 5 - 10x - 10 )
= ( 26x + 15 ) ( 6x - 5 )
tớ lm câu a thui nha , tại khó quá ^^
a/ \(=3x^6+3x^5+6x^4+3x^3+3x^2-7x^5-7x^4-14x^3-7x^2-7x+3x^4+3x^3+6x^2+3x+1\)
\(=3x^2\left(x^4+x^3+2x^2+x+1\right)-7x\left(x^4+x^3+2x^2+x+1\right)+3\left(x^4+x^3+2x^2+x+1\right)\)
\(=\left(3x^2-7x+3\right)\left(x^4+x^3+x^2+x^2+x+1\right)\)
\(=\left(3x^2-7x+3\right)\left[x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\right]\)
\(=\left(3x^2-7x+3\right)\left(x^2+1\right)\left(x^2+x+1\right)\)
a. 2x-1-x2= -(x2-2x+1)=-(x-1)2
b. 8x3+y6=(2x)3+(y2)3
=(2x+y2)(4x2-2xy2+y4)
c. x2-16+4xy+4y2=(x2+4xy+4y2)-16
=(x+2y)2-16=(x+2y+4)(x+2y-4)
a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2
b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)
= -(52 – 2 . 5 . x – x2) = -(5 – x)2
c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]
= (2x - 1/2)(4x2 + x + 1/4)
d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)
Bài 1:tìm x ,biết:
a) (2x - 1)(3x + 2) - 6x(x + 1) = 0
\(\Leftrightarrow6x^2+x-2-6x^2-6x=0\)
\(\Leftrightarrow-5x=2\)
\(\Leftrightarrow x=\frac{-2}{5}\)
b) \(\left(4x-1\right)^2-\left(2x+1\right)\left(8x-3\right)=0\)
\(\Leftrightarrow16x^2-8x+1-16x^2-2x+3=0\)
\(\Leftrightarrow-10x=-4\)
\(\Leftrightarrow x=\frac{2}{5}\)
c) \(4x^2-1=2\left(2x+1\right)\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1\right)-2\left(2x+1\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
2a) \(4x^2-9y^2-6y-1=4x^2-\left(3y+1\right)^2\)
\(=\left(2x-3y-1\right)\left(2x+3y+1\right)\)
b) \(4x^2-1-2x\left(2x-1\right)=\left(2x-1\right)\left(2x+1\right)-2x\left(2x-1\right)\)
\(=1.\left(2x-1\right)\)
c) \(x^2-8x-4y^2+16=\left(x-4\right)^2-4y^2\)
\(=\left(x-4-2y\right)\left(x-4+2y\right)\)
d) \(9x^2-12x-y^2+4=\left(3x-2\right)^2-y^2\)
\(=\left(3x-2-y\right)\left(3x-2+y\right)\)
e) \(4x^2+10x-5=4x^2+2.2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-5\)
\(=\left(2x+\frac{5}{2}\right)^2-\frac{45}{4}\)
\(=\left(2x+\frac{5+3\sqrt{5}}{2}\right)\left(2x+\frac{5-3\sqrt{5}}{2}\right)\)
a) \(8x^2-12xy+4y^2-2x-1\)
\(=4y^2-8xy-2y-4xy+8x^2+2x+2y-4x-1\)
\(=\left(4y^2-8xy-2y\right)-\left(4xy-8x^2-2x\right)+\left(2y-4x-1\right)\)
\(=2y\left(2y-4x-1\right)-2x\left(2y-4x-1\right)+\left(2y-4x-1\right)\)
\(=\left(2y-2x+1\right)\left(2y-4x-1\right)\)
b) \(4x^4+16\)
\(=4x^4+16x^2+16-16x^2\)
\(=\left(2x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(2x^2+4x+4\right)\left(2x^2-4x+4\right)\)
\(=4\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)