K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

a) \(\frac{1}{4}x^2-5xy+25y^2=\left(\frac{1}{2}x\right)^2-5xy+\left(5y\right)^2\)

\(=\left(\frac{1}{2}x-5y\right)^2\)

b) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)

\(=\left(7x-4+2x+1\right)\times\left(7x-4-2x-1\right)=\left(9x-3\right)\times\left(5x-5\right)\)

\(=3\times5\times\left(3x-1\right)\times\left(x-1\right)=15\times\left(3x-1\right)\times\left(x-1\right)\)

c)\(\left(x-2\right)^2-4y^2=\left(x-2-2y\right)\left(x-2+2y\right)\)

d) \(125-x^6=5^3-\left(x^2\right)^3=\left(5-x^2\right)\left(25+5x^2+x^4\right)\)

6 tháng 6 2019

\(a,\)\(x^3-13x-12\)

\(=x^3-x-12x-12\)

\(=x\left(x^2-1\right)-12\left(x+1\right)\)

\(=x\left(x-1\right)\left(x+1\right)-12\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-12\right)\)

\(=\left(x+1\right)\left(x^2-4x+3x-12\right)\)

\(=\left(x+1\right)\left[x\left(x-4\right)+3\left(x+4\right)\right]\)

\(=\left(x+1\right)\left(x-4\right)\left(x+3\right)\)

6 tháng 6 2019

a) \(x^3-13x-12\)

\(=x^3+x^2-x^2-x-12x-12\)

\(=x^2\left(x+1\right)-x\left(x+1\right)-12\left(x+1\right)\)

\(=\left(x+1\right)\left(x^2-x-12\right)\)

\(=\left(x+1\right)\left(x^2-4x+3x-12\right)\)

\(=\left(x+1\right)\left[x\left(x-4\right)+3\left(x-4\right)\right]\)

\(=\left(x+1\right)\left(x-4\right)\left(x+3\right)\)

b) \(2x^4+3x^3-9x^2-3x+2\)câu này hình như sai đề rồi, bạn xem lại nhen

c) \(x^4-3x^3-6x^2+3x+1\)câu này cx thế, bạn xem lại nha

1 tháng 10 2016

Phân tích đa thức thành nhân tử:

a) \(xy+y^2-x-y=y\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(y-1\right)\)

b) \(25-x^2+4xy-4y^2=25-\left(x^2-4xy+4y^2\right)=25-\left(x-2y\right)^2\)

\(=\left(5-x+2y\right)\left(5+x-2y\right)\)

Rút gọn biểu thức;

\(A=\left(6x+1\right)^2+\left(3x-1\right)^2-2\left(3x-1\right)\left(6x+1\right)\)

\(=\left[\left(6x+1\right)-\left(3x-1\right)\right]^2=\left(6x+1-3x+1\right)=\left(3x+2\right)^2\)

Tìm a để đa thức.. Bạn chia cột dọ thì da

1 tháng 10 2016

\(xy+y^2-x-y=\left(xy+y^2\right)-\left(x+y\right)=y\left(x+y\right)-\left(x+y\right)=\left(y-1\right)\left(x+y\right)\)b)\(25-\left(x^2-4xy+4y^2\right)=5^2-\left(x-2y\right)^2=\left(x-2y+5\right)\left(5-x+2y\right)\)

15 tháng 7 2016

\(=2\left(x^2-y^2\right)-6\left(x+y\right)=2\left(x-y\right)\left(x+y\right)-6\left(x+y\right)=\left(x+y\right)\left(2x-2y-6\right)\)                                                                                    Đảm bảo chuẩn ko cần chỉnh (•••

  check mk nhá
 

15 tháng 7 2016

2X2-2Y2-6X-6Y

=2(X2-Y2) +6(X-Y)

=2(X-Y)(X+Y)+3.2(X-Y)

=2(X-Y)(X+Y+3X-3Y)

=2(X-Y)(4X-2Y)

=4(X-Y)(2X-Y)

(4x2)(10x+4)(5x+7)(2x+1)+17=0(4x−2)(10x+4)(5x+7)(2x+1)+17=0

(4x2)(5x+7)(10x+4)(2x+1)+17=0⇔(4x−2)(5x+7)(10x+4)(2x+1)+17=0

(20x2+18x14)(20x2+18x+4)+17=0⇔(20x2+18x−14)(20x2+18x+4)+17=0

Đặt t= 20x2+18x+4(t0)20x2+18x+4(t≥0) ta có:

(t-18).t +17=0

t218t+17=0⇔t2−18t+17=0

(t17)(t1)=0⇔(t−17)(t−1)=0

[t=17(tm)t=1(tm)⇔[t=17(tm)t=1(tm) [20x2+18x+4=1720x2+18x+4=1[20x2+18x13=020x2+18+3=0⇔[20x2+18x+4=1720x2+18x+4=1⇔[20x2+18x−13=020x2+18+3=0

[(20x+9341)(20x+9+341)=0(20x+921)(20x+9+21)=0⇔[(20x+9−341)(20x+9+341)=0(20x+9−21)(20x+9+21)=0

x=9+34120x=934120x=9+2120x=92120

6 tháng 6 2019

\(a,\)\(\left(4x-2\right)\left(10x+4\right)\left(5x+7\right)\left(2x+1\right)+17\)

\(=\left(4x-2\right)\left(5x+7\right)\left(10x+4\right)\left(2x+1\right)+17\)

\(=\left(20x^2+18x-5\right)\left(20x^2+18x+4\right)+17\)

Đặt ....