K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2016

\(x^5+x+1=x^5-x^2+x^2+x+1=x^2\left(x^3-1\right)+\left(x^2+x+1\right)=x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^3-x^2+1\right)\)

\(x^{10}+x^5+1=x^{10}-x+x^5-x^2+x^2+x+1=x\left(x^9-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^6+x^3+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^6+x^3+1\right)+x^2+1\right]\)

14 tháng 10 2016

Cám ơn bạn

23 tháng 8 2015

= x^10 - x + x^5 - x^2 + x^2 + x + 1 

= x ( x^9 - 1 ) + x^2 (x^3 - 1 ) + x^2 + x + 1 

= x [ ( x^3 - 1) ( x^6 + x^3 + 1 )] + x^2 ( x - 1 )(x^2 + x + 1 ) + x^2 + x + 1 

= x  ( x - 1 )(x^2 + x + 1 )(x^6 + x^3 + 1) + x^2 (x-1 )(x^2 + x+  1 ) + x^2 + x + 1 

= (x^2 + x + 1 )[ x(x-1)(x^6 + x^3 + 1 ) + x^2 + 1 ) 

Nhân ra giúp mình nha 

23 tháng 8 2015

vào câu hỏi  liên quan

18 tháng 7 2015

x10 + x5 + 1 = (x10 - x) + (x5 - x2) + (x2 + x + 1) = x.[(x3)3 - 1] + x2.(x3 - 1) + (x2 + x + 1)

= x.(x3 - 1).(x6 + x3 + 1) + x2.(x3 - 1) + (x2 + x + 1)

= (x2 + x + 1). [x.(x -1).(x6 + x3 + 1) + x2 + 1 ]

25 tháng 10 2017
x^14+x^4+1
24 tháng 7 2016

1 ) 

=x3-2x2+6x2-12x+5x-10

=x2(x-2)+6x(x-2)+5(x-2)

=(x-2)(x2+6x+5)

=(x-2)(x2+x+5x+5)

=(x-2)[x(x+1)+5(x+1)]

=(x-2)(x+1)(x+5)

toàn mũ lớn hơn 3 khó làm quá!!!! >.<

653645645645645676746784734746856876897684737547

26 tháng 11 2016

\(=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

2 tháng 12 2016

\(A\) \(=\) \(x^{10}+x^5+1\)

\(A=\left(x^{10}+x\right)+\left(x^5-^2\right)+\left(x^2+x+1\right)\)

\(A=x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(A=\left(x^2+x+1\right)\left(x^8-x^7+x^5-x^4+x^3-x+1\right)\)

hơi tắt các bạn tự hiểu nhé

(thanks)

17 tháng 7 2017

x7+x6+x5-x6-x5-x4+x5+x4+x3-x3-x2-x1+x2+x1+1

= x5(x2+x+1) - x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1) +(x2+x+1)

=(x2+x+1)( x5-x4+x3-x+1)

24 tháng 10 2019

────(♥)(♥)(♥)────(♥)(♥)(♥) __ ɪƒ ƴσυ’ʀє αʟσηє,
──(♥)██████(♥)(♥)██████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧα∂σѡ.
─(♥)████████(♥)████████(♥) ɪƒ ƴσυ ѡαηт тσ cʀƴ,
─(♥)██████████████████(♥) ɪ’ʟʟ ɓє ƴσυʀ ѕɧσυʟ∂єʀ.
──(♥)████████████████(♥) ɪƒ ƴσυ ѡαηт α ɧυɢ,
────(♥)████████████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ρɪʟʟσѡ.
──────(♥)████████(♥) ɪƒ ƴσυ ηєє∂ тσ ɓє ɧαρρƴ,
────────(♥)████(♥) __ ɪ’ʟʟ ɓє ƴσυʀ ѕɱɪʟє.
─────────(♥)██(♥) ɓυт αηƴтɪɱє ƴσυ ηєє∂ α ƒʀɪєη∂,
───────────(♥) __ ɪ’ʟʟ ʝυѕт ɓє ɱє.

21 tháng 6 2016

a, x10+x9+x8-x9-x8-x7+x7+x6+x5-x6-x5-x4+x5+x4+x3-x3-x2-x+x2+x+1 = x8(x2+x+1)-x7(x2+x+1)+x5(x2+x+1)-x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1) =(x8-x7+x5-x4+x3-x+1)

 b,x8+x7+x6-x7-x6-x5+x5+x4+x3-x3-x2-x+x2+x+1 =x6( x2+x+1)-x5(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1) = (x2+x+1)(x6-x5+x3-x+1)                                                                                                                                           

21 tháng 6 2016

a)Ta có: x10+x5+1=x10+x7-x7+x6-x6+x5+1

                          =(x10-x7) - (x6-1) + (x7+x6+x5)

                          =x7(x3-1) - ((x3)2-1) + (x2+x+1)

                          =x7(x-1)(x2+x+1) - (x3-1)(x3+1) + x5(x2+x+1)

                         =x7(x-1)(x2+x+1) - (x-1)(x2+x+1)(x3+1) + x5(x2+x+1)

                         =(x2+x+1)(x7(x+1)-(x+1)(x3+1)+x5)

                         =(x2+x+1)(x8-x7+x5-x4+x3-x+1)

19 tháng 10 2021

1) \(\left(x^2+8x+7\right).\left(x+3\right).\left(x+5\right)+15\)

\(=\left(x^2+8x+7\right).\left(x^2+5x+3x+15\right)+15\)

\(=\left(x^2+8x+7\right).\left(x^2+8x+15\right)+15\)

Ta đặt: \(x^2+8x+7=n\)

\(=n.\left(n+8\right)+15\)

\(=n^2+8n+15\)

\(=n^2+3n+5n+15\)

\(=\left(n^2+3n\right)+\left(5n+15\right)\)

\(=n.\left(n+3\right)+5.\left(n+3\right)\)

\(=\left(n+3\right).\left(n+5\right)\)

\(=\left(x^2+8x+7+3\right).\left(x^2+8x+7+5\right)\)

\(=\left(x^2+8x+10\right).\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right).\left(x^2+2x+6x+12\right)\)

\(=\left(x^2+8x+10\right).[x.\left(x+2\right)+6.\left(x+2\right)]\)

\(=\left(x^2+8x+10\right).\left(x+2\right).\left(x+6\right)\)

19 tháng 10 2021

2) \(x^2-2xy+3x-3y-10+y^2\)

\(=\left(x-y\right)^2+3.\left(x-y\right)-10\)

Ta đặt: \(x-y=n\)

\(=n^2+3n-10\)

\(=n^2-2n+5n-10\)

\(=\left(n^2-2n\right)+\left(5n-10\right)\)

\(=n.\left(n-2\right)+5.\left(n-2\right)\)

\(=\left(n-2\right).\left(n+5\right)\)

\(=\left(x-y-2\right).\left(x-y+5\right)\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

1 tháng 8 2016

a) \(x^5+x-1\)

\(=x^5+x^4+x^3+x^2-x^4-x^3-x^2+x-1\)

\(=\left(x^5-x^4+x^3\right)+\left(x^4-x^3+x^2\right)-\left(x^2-x+1\right)\)

\(=x^3\left(x^2-x+1\right)+x^2\left(x^2-x+1\right)-\left(x^2-x+1\right)\)

\(=\left(x^2-x+1\right)\left(x^3+x^2-1\right)\)(còn 1 cách nữa là thêm bớt \(x^2\)vào bạn nhé!)

b) \(x^7+x^2+1\)

\(=x^7-x+x^2+x+1\)

\(=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)

\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+1\right]\)

\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

(Chúc bạn học tốt và nhớ tíck cho mình với nhé!)