Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
We have :
\(A=\frac{-2a}{2ab+2a+1}-\frac{b}{bc+b+1}+\frac{c}{-2ac-c-1}\)
\(=\frac{-2a}{2ab+2a+2abc}-\frac{b}{bc+b+1}+\frac{bc}{-2abc-bc-b}\)(\(abc=\frac{1}{2}\))
\(=\frac{-2a}{2a\left(bc+b+1\right)}-\frac{b}{bc+b+1}+\frac{bc}{-\frac{2.1}{2}-bc-b}\)(\(abc=\frac{1}{2}\))
\(=\frac{-1}{bc+b+1}-\frac{b}{bc+b+1}-\frac{bc}{bc+b+1}\)
\(=\frac{-bc-b-1}{bc+b+1}=-1\)
The value of A is - 1 because \(abc=\frac{1}{2}\)
a, \(A=x^2-x\sqrt{y}-2x\sqrt{y}+2y\)
\(=x\left(x-\sqrt{y}\right)-2\sqrt{y}\left(x-\sqrt{y}\right)\)
\(=\left(x-2\sqrt{y}\right)\left(x-\sqrt{y}\right)\)
\(a,\)\(A=x^2-3x\sqrt{y}+2y\)
\(=x^2-2x\sqrt{y}-x\sqrt{y}+2y\)
\(=x\left(x-2\sqrt{y}\right)-\sqrt{y}\left(x-2\sqrt{y}\right)\)
\(=\left(x-\sqrt{y}\right)\left(x-2\sqrt{y}\right)\)
\(b,\)Ta có : \(x=\frac{1}{\sqrt{5}-2}=\frac{\sqrt{5}+2}{\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)}=\frac{\sqrt{5}+2}{5-4}=\sqrt{5}+2\)
\(y=\frac{1}{9+4\sqrt{5}}=\frac{9-4\sqrt{5}}{\left(9+4\sqrt{5}\right)\left(9-4\sqrt{5}\right)}=\frac{9-4\sqrt{5}}{81-80}=9-4\sqrt{5}=\left(\sqrt{5}-2\right)^2\)
\(\Rightarrow A=\left[\sqrt{5}+2-\sqrt{\left(\sqrt{5}-2\right)^2}\right]\left[\sqrt{5}+2-2\sqrt{\left(\sqrt{5}-2\right)^2}\right]\)
\(=\left(\sqrt{5}+2-\sqrt{5}-2\right)\left(\sqrt{5}+2-2\sqrt{5}+4\right)\)
\(=4\left(6-\sqrt{5}\right)\)
\(=24-4\sqrt{5}\)
Bài 1:
\(a^2\left(b-2c\right)+b^2\left(c-a\right)+2c^2\left(a-b\right)+abc\)
\(=2c^2\left(a-b\right)+a^2b-ab^2+b^2c-a^2c+abc-a^2c\)
\(=2c^2\left(a-b\right)+ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)-ac\left(a-b\right)\)
\(=\left(a-b\right)\left(2c^2+ab-ac-cb-ac\right)\)
\(=\left(a-b\right)\left(a-c\right)\left(b-2c\right)\)
Bài 2:
\(x^2+3x+1=0\Leftrightarrow x+\frac{1}{x}=-3\)(vì \(x=0\)không là nghiệm)
Ta có:
\(x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3\left(x+\frac{1}{x}\right).x.\frac{1}{x}=-3^3-3.\left(-3\right)=-18\)
\(x^4+\frac{1}{x^4}=\left(x^2+\frac{1}{x^2}\right)^2-2=\left[\left(x+\frac{1}{x}\right)^2-2\right]^2-2=47\)
\(\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)=x^7+\frac{1}{x^7}+x+\frac{1}{x}\)
\(\Leftrightarrow x^7+\frac{1}{x^7}=\left(x^4+\frac{1}{x^4}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=-18.47-\left(-3\right)=-843\)
\(A=a+b+c-2\left(ab+bc+ca\right)+4abc-\frac{1}{2}\)
\(=\frac{1}{2}\left(2a-1\right)\left(2b-1\right)\left(2c-1\right)\)
từ đây khai triển ra
Vì với mỗi trận đấu đội thắng được cộng 2 điểm, đội thua không được điểm, 2 đội hoà đều được cộng 1 điểm
=>Sau mỗi trận đấu, tổng số điểm tăng thêm 2 điểm
Vì có n người tham gia=>có n.(n-1)/2 trận đấu=>Có tổng cộng n.(n-1) điểm
Ta sắp xếp n người theo số điểm tăng dần là S1,S2,...,Sn với \(S1\le S2\le...\le Sn;S1+S2+...+Sn=n.\left(n-1\right)\)
Gọi 2 số Sa và S(a+1) có khoảng cách lớn nhất=>\(S1\le...\le Sa\le S\left(a+1\right)\le...\le Sn\)
Đặt \(S1+...+Sa=b\le Sa+...+Sa=a.Sa=>Sa\ge\frac{b}{a}\)(1)
Vì S1+S2+...+Sn=n(n-1)
=>S(a+1)+...+Sn=n(n-1)-(S1+...+Sa)=n(n-1)-b
Do đó: \(S\left(a+1\right)+...+Sn=n\left(n-1\right)-b\ge S\left(a+1\right)+...+S\left(a+1\right)=\left(n-a\right).S\left(a+1\right)\)
\(=>S\left(a+1\right)\le\frac{n\left(n-1\right)-b}{n-a}\)(2)
Lại có: Xét a người S1,...Sa có tất cả: a(a-1)/2 trận đấu lẫn nhau
=>Sau những trận đấu lẫn nhau có tổng số điểm là a(a-1)
Vì a người S1,...Sa còn đấu với n-a người S(a+1),...,Sn
=>Tổng số điểm sẽ lớn hơn hoặc bằng a(a-1)=>\(b\ge a\left(a-1\right)\)(3)
Áp dụng (1),(2) và (3) ta có:
\(S\left(a+1\right)-S\left(a\right)\le\frac{n\left(n-1\right)-b}{n-a}-\frac{b}{a}=\frac{n\left(n-1\right)a-nb}{\left(n-a\right)a}\le\frac{n\left(n-1\right)a-n.a\left(a-1\right)}{\left(n-a\right)a}=\frac{n.a.\left(n-a\right)}{\left(n-a\right).a}=n\)Dấu "=" có thể xảy ra khi đội thấp nhất thua hết được 0 điểm, (n-1) đội còn lại hoà lẫn nhau và thắng đội thấp nhất nên được n điểm
Vậy khoảng cách lớn nhất giữa 2 đội xếp liên tiếp là n (điểm)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)\)
\(=\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=\frac{\left(a+b\right)\left(ab+ac+bc+c^2\right)}{abc\left(a+b+c\right)}\)
\(=\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc\left(a+b+c\right)}\)