Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) = a3+b3+c3 +3a2b +3ab2 -3ab(a+b) - 3abc
= (a+b)3+c3-3ab(a+b)-3abc (áp dụng A3+B3 ta có)
=(a+b+c) ( (a+b)2 - (a+b)c +c2) - 3ab(a+b+c)
=(a+b+c) ( (a+b)2 - (a+b)c +c2 - 3ab) (nhân tử chung là a+b+c)
=(a+b+c) ( a2+2ab+b2- ac-bc +c2 -3ab)
=(a+b+c) (a2+b2+c2-ab-ac-bc)
Phần b tương tự
\(=\left(x^3+y^3\right)+z^3-3xyz=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3xyz\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy+yz+zx\right)\)
\(x^3+y^3+z^3-3xyz=\left(x^3+y^3\right)-3xyz+z^3\)
\(=\left(x+y\right)^3-3xy.\left(x+y\right)-3xyz+z^3\)
\(=\left[\left(x+y\right)^3+z^3\right]-\left[3xy.\left(x+y\right)+3xyz\right]\)
\(=\left(x+y+z\right).\left(x^2+2xy+y^2-zx-zy+z^2\right)-3xy.\left(x+y+z\right)\)
\(=\left(x+y+z\right).\left(x^2+y^2+z^2-zx-zy+2zy-3xy\right)\)
\(=\left(x+y+z\right).\left(x^2+z^2+y^2-zx-zy-xy\right)\)
Vừa làm xong . Chúc bạn học tốt !
\(=\left(x+y\right)^3+z^z-3x^2y-3xy^2-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)
= (x+y)3 - 3x2y-3xy2+z2-3xyz
=(x+y+z)[(x+y)2-(x+y)z+z2]-3x(x+y+z)
=(x+y+z)(x2+y2+z2-xy-yz-zx)
x3+y3+z2-3xyz=( x3+y3+3x2y +3xy2)-3x2y+3xy2+ z3-3xyz
= [ (x+y)3+z3 ] - [3xy(x+y) + 3xyz]
=(x+y+z)[(x+y)2 -(x+y)z+z2 ] - 3xy(x+y+z)
= (x+y+z)(x2+y2+z2+2xy-xz-yz-3xy)
=(x+y+z)(x2+y2+z2-xy-xz-yz)
x^3+y^3+z^3-3xyz
=(x+y+z)^3-3x^2.y-3x.y^2-3y^2.z-3y.z^2...
=(x+y+z)^3-3xy(x+y+z)-3yz(x+y+z)-3xz(x...
=(x+y+z)(<x+y+z>^2-3xy-3yz-3xz)
=(x+y+z)(x^2+y^2+z^2+2xy+2yz+2xz-3xy-3...
=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)