K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-4x+13=x^2-4x+4+9\)

\(=\left(x-2\right)^2+9\)

17 tháng 3 2020

=\(\left(3x^2-4x-13-4x^2+9\right)\left(3x^2-4x-13+4x^2-9\right)-\left(x+2\right)^4\)

=\(\left(-x^2-4x-4\right)\left(7x^2-4x-22\right)-\)\(\left(x+2\right)^{^{ }2.2}\)

=\(-\left(x+2\right)^2\left(7x^2-4x-22\right)-\left(x+2\right)^2\left(x+2\right)^2\)

=\(-\left(x+2\right)^2\)\(\left(7x^2-4x-22-x^2-4x-4\right)\)

\(-\left(x+2\right)^2\)(\(6x^2-8x-26\))

5 tháng 7 2019

#)Giải :

\(x^3-2x-4\)

\(=x^3+2x^2-2x^2+2x-4x-4\)

\(=x^3+2x^2+2x-2x^2-4x-4\)

\(=x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

\(x^4+2x^3+5x^2+4x-12\)

\(=x^4+x^3+6x^2+x^3+x^2+6x-2x^2-2x-12\)

\(=x^2\left(x^2+x+6\right)+x\left(x^2+x+6\right)-2\left(x^2+x+6\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x-1\right)\left(x+2\right)\)

5 tháng 7 2019

Câu 1.

Đoán được nghiệm là 2.Ta giải như sau:

\(x^3-2x-4\)

\(=x^3-2x^2+2x^2-4x+2x-4\)

\(=x^2\left(x-2\right)+2x\left(x-2\right)+2\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+2\right)\)

22 tháng 11 2017

a. \(=4x^3-12x^2-x^2+3x+6x-18=\left(x-3\right)\left(4x^2-x+6\right)\)

b.  \(=-x^3+x^2-7x^2+7x-x+1=\left(x-1\right)\left(-x^2-7x-1\right)\)

c.  \(=x^3+2x^2-6x^2-12x+4x+8=\left(x+2\right)\left(x^2-6x+4\right)\)

5 tháng 9 2018

Đặt \(A=\left(x^2+x\right)^2+4x^2+4x-12\)        

         \(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

Đặt \(x^2+x=t\)

Khi đó: \(A=t^2+4t-12\)

              \(=\left(t-2\right)\left(t+6\right)\)

              \(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

              \(=\left[x^2+2x-x-2\right].\left(x^2+x+6\right)\)

              \(=\left[x\left(x+2\right)-\left(x+2\right)\right].\left(x^2+x+5\right)\)

              \(=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)

Mong bạn hiểu lời giải và chúc bạn học tốt.

12 tháng 12 2018

Pham Van Hung. Hình như bạn sai đó, xem kĩ lại dòng thức 2 và 3 từ dưới lên đi.

30 tháng 6 2016

\(4x^4+4x^3-x^2-x\)

\(=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(x+1\right)\left(4x^3-x\right)\)

\(=x\left(x+1\right)\left(4x^2-1\right)\)

\(=x\left(x+1\right)\left[\left(2x\right)^2-1\right]\)

\(=x\left(x+1\right)\left(2x+1\right)\left(2x-1\right)\)

(Nhớ k cho mình với nhá!)

30 tháng 6 2016

vậy x= 0 ,25

=>x=0,25

nhớ cho mik nha

21 tháng 6 2016

Ta nhận thấy sự giống nhau gữa các biểu thức trong và ngoài bình phương, từ đó nghĩ đến việc đặt ẩn phụ.

Đặt \(x^2+x=t\) , khi đó đa thức đã cho trở thành \(t^2+4t-12=\left(t-2\right)\left(t+6\right)\)

Quay trở lại biến x ta có: \(\left(x^2+x+6\right)\left(x^2+x-2\right)\)

19 tháng 10 2016

\(x^3+4x^2+4x+1\)

\(=x^3+3x^2+x+x^2+3x+1\)

\(=x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)\)

\(=\left(x+1\right)\left(x^2+3x+1\right)\)

6 tháng 11 2021

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)