K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

a) Đặt y=x2+x+1

Thay y vào biểu thức ta được

y(y+1)-12

=y2 + y - 12

= y2 - 3y + 4y -12

= y(y-3) + 4(y-3)

= (y-3)(y+4)

29 tháng 8 2019

\(a,\left(x^2+x+1\right)\left(x^2+x+2\right)-12.\)

Đặt \(x^2+x+1=a\)

\(\Rightarrow a\left(a+1\right)-12\)\(=a^2+a-12\)

\(=a^2-3a+4a-12\)

\(=a\left(a-3\right)+4\left(a-3\right)\)

\(=\left(a-3\right)\left(a+4\right)\)

\(=\left(x^2+x+1-3\right)\left(x^2+x+1+4\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+5\right)\)

\(b,\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

Đặt \(x^2+x=a\)

\(\Rightarrow a^2+4a-12\)

\(=a^2-2a+6a-12\)

\(=a\left(a-2\right)+6\left(a-2\right)\)

\(=\left(a-2\right)\left(a+6\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)

29 tháng 8 2019

Trả lời:

       Đặt x^2+x+1=t

       <=> t ( t + 1 ) - 12  = t^2 + t - 12 = t^2 + 4t - 3t - 12 = ( t + 4 ) ( t - 3 )

thay vào cách đặt

=> ( t + 4 )( t - 3 )=(x^2+x+5)(x^2+x-2)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

15 tháng 4 2020

a)9(2x+1)2 - 4(x-1) 

<=>33(2x+1)2-22(x+1)2

<=>(3(2x+1)) 2-(2(x+1))2

<=>(6x+3)2-(2x+1)2

<=>((6x+3)-(2x+1)) ((6x+3)+(2x+1))

<=>(6x+3-2x-1)(6x+3+2x+1)

<=.>(4x+2)(8x+4)

b) x- 19x- 30

<=>x3-25x+6x-30  

<=.>x(x2-52)+6(x-5)

<=>x(x+5)(x-5)+6(x-5)

<=>(x-5) (x2+5x+6)

<=>(x-5) (x2+2x+3x+6)

<=>(x-5) ( x(x+2)+3(x+2))

<=>(x-5) (x+2)(x+3)

c) x4+ x+1

<=>x4+x2+1

<=>x4−x+x2+x+1

<=>x(x3−1)+(x2+x+1)

<=>x(x−1)(x2+x+1)+(x2+x+1)

<=>(x2+x+1)[x(x−1)+1]

<=>(x2+x+1)(x2−x+1)

câu d mình chịu :(((

4 tháng 8 2016
2(x+1)(x+5)(x^2+6x+19)
1 tháng 9 2020

B1:

a) \(5\left(x^2+y^2\right)-20x^2y^2\)

\(=5\left(x^2-4x^2y^2+y^2\right)\)

b) \(=2\left(x^8-16\right)=2\left(x^4-4\right)\left(x^4+4\right)=2\left(x^2-2\right)\left(x^2+2\right)\left(x^4+4\right)\)

1 tháng 9 2020

B2: 

a) Đặt \(x^2-3x+1=y\)

=> \(y^2-12y+27\)

\(=\left(y^2-12y+36\right)-9\)

\(=\left(y-6\right)^2-3^2\)

\(=\left(y-9\right)\left(y-3\right)\)

\(=\left(x^2-3x-10\right)\left(x^2-3x-4\right)\)

\(=\left(x+1\right)\left(x-4\right)\left(x^2-3x-10\right)\)

b) Đặt \(x^2+7x+11=t\)

Ta có: \(\left[\left(x+2\right)\left(x+5\right)\right]\cdot\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)

\(=\left(t-1\right)\left(t+1\right)-24\)

\(=t^2-25\)

\(=\left(t-5\right)\left(t+5\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)\)

2 tháng 11 2018

\(x^8+x+1\)

\(=x^8+x^7+x^6-x^7-x^6-x^5+x^5+x^4+x^3-x^4-x^3-x^2+x^2+x+1\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x^2\left(x^2+x+1\right)+x^2+x+1\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x^2+1\right)\)

7 tháng 11 2018

Mình đã làm xong lâu rồi bạn :)

Stop đào mộ :)

30 tháng 10 2016

\(A=\left(x^2+x\right)^2-14\left(x^2+x\right)+24\)

Đặt \(x^2+x=t\), ta có:

\(A=t^2-14t+24\)

\(=t^2-2t-12t+24\)

\(=t\left(t-2\right)-12\left(t-2\right)\)

\(=\left(t-2\right)\left(t-12\right)\)

\(=\left(x^2+x-2\right)\left(x^2+x-12\right)\)

\(B=\left(x^2+x\right)^2+4x^2+4x-12\)

\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

Đặt \(x^2+x=t\), ta có:

\(B=t^2+4t-12\)

\(=t^2+6t-2t-12\)

\(=t\left(t+6\right)-2\left(t+6\right)\)

\(=\left(t+6\right)\left(t-2\right)\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)

Đặt \(x^2+5x+4=t\), ta có:

\(C=t\left(t+2\right)+1\)

\(=t^2+2t+1\)

\(=\left(t+1\right)^2\)

\(=\left(x^2+5x+4+1\right)^2\)

\(=\left(x^2+5x+5\right)^2\)

\(D=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+7=t\), ta có:

\(D=t\left(t+8\right)+15\)

\(=t^2+8t+15\)

\(=t^2+3t+5t+15\)

\(=t\left(t+3\right)+5\left(t+3\right)\)

\(=\left(t+3\right)\left(t+5\right)\)

\(=\left(x^2+8x+7+3\right)\left(x^2+8x+7+5\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(F=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt \(x^2+x+1=t\), ta có:

\(F=t\left(t+1\right)-12\)

\(=t^2+t-12\)

\(=t^2+4t-3t-12\)

\(=t\left(t+4\right)-3\left(t+4\right)\)

\(=\left(t+4\right)\left(t-3\right)\)

\(=\left(x^2+x+1+4\right)\left(x^2+x+1-3\right)\)

\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(E=x^4+2x^3+5x^2+4x-12\)

\(=x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12\)

\(=x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)\)

\(=\left(x-1\right)\left(x^3+3x^2+8x+12\right)\)

\(=\left(x-1\right)\left(x^3+2x^2+x^2+2x+6x+12\right)\)

\(=\left(x-1\right)\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)

 

30 tháng 10 2016

siêng phết

9 tháng 10 2016

\(\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)-80=\left(x^2-5x+4\right)\left(x^2-5x+6\right)-80\)

Đặt \(x^2-5x+4=t\), ta có:

\(t\left(t+2\right)-80=t^2-2t+1-81=\left(t-1\right)^2-9^2=\left(t-1-9\right)\left(t-1+9\right)=\left(t-10\right)\left(t+8\right)\)

\(=\left(x^2-5x+4-10\right)\left(x^2-5x+4+8\right)=\left(x^2-5x-6\right)\left(x^2-5x+12\right)\)

\(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)

Đặt x2 + x + 1 = t, ta có:

t(t + 1) - 12

= t2 + t + 1/4 - 49/4

= (t + 1/2)2 - (7/2)2

= (t + 1/2 + 7/2)(t + 1/2 - 7/2)

= (t + 4)(t - 3)

9 tháng 10 2016

nhân váo như bình thường sau đó bấm máy tính shift solve =? rồi chia hoocne