K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^3-2x^2-4xy^2+x\)

\(=x\left(x^2-2x-4y^2+1\right)\)

\(=x\left(\left(x-1\right)^2-\left(2y\right)^2\right)\)

\(=x\left(x-1-2y\right)\left(x-1+2y\right)\)

22 tháng 10 2020

a) x2 - 16 - 4xy + 4y2

= ( x2 - 4xy + 4y2 ) - 16

= ( x - 2y )2 - 42

= ( x - 2y - 4 )( x - 2y + 4 )

b) x5 - x4 + x3 - x2

= x2( x3 - x2 + x - 1 )

= x2[ x2( x - 1 ) + ( x - 1 ) ]

= x2( x - 1 )( x2 + 1 )

c) x( x + 4 )( x + 6 )( x + 10 ) + 128 < mình nghĩ là nên sửa đề như này :]> 

= [ x( x + 10 ) ][ ( x + 4 )( x + 6 ) ] + 128

= ( x2 + 10x )( x2 + 10x + 24 ) + 128

Đặt t = x2 + 10x

bthuc <=> t( t + 24 ) + 128

            = t2 + 24t + 128

            = t2 + 16t + 8t + 128

            = t( t + 16 ) + 8( t + 16 ) 

            = ( t + 16 )( t + 8 )

            = ( x2 + 10x + 16 )( x2 + 10x + 8 )

            = ( x2 + 2x + 8x + 16 )( x2 + 10x + 8 )

            = [ x( x + 2 ) + 8( x + 2 ) ]( x2 + 10x + 8 )

            = ( x + 2 )( x + 8 )( x2 + 10x + 8 )

cảm ơn bạn câu c mình chép nhầm nó là 128 đó 

23 tháng 7 2016

1/ \(x^2+x-90=\left(x^2-10x\right)+\left(9x-90\right)=x\left(x-10\right)+9\left(x-10\right)=\left(x-10\right)\left(x+9\right)\)

2/ \(2x^2+4xy+2y^2=\left(2x^2+2xy\right)+\left(2xy+2y^2\right)=2x\left(x+y\right)+2y\left(x+y\right)=\left(x+y\right)\left(2x+2y\right)\)

3/ \(2y^2-14y+24=2\left(y^2-7y+12\right)=2\left[\left(y^2-4y\right)+\left(12-3y\right)\right]=2\left[y\left(y-4\right)-3\left(y-4\right)\right]\)

\(=2\left(y-4\right)\left(y-3\right)\)

4/ \(x^8+x^4+1=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)

\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)

\(=\left(x^2+x+1\right)\left[\left(x^6-x^5+x^4\right)-\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)\right]\)

\(=\left(x^2+x+1\right)\left[x^4\left(x^2-x+1\right)\right]-x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)

15 tháng 8 2016

bậc to thế ==

16 tháng 8 2016


 

4 tháng 8 2016

a)x^2.16-4xy+4y^2

<=>16.x^2-2x2y+(2y)^2

<=>16(x-2y)^2

b)x^5-x^4+x^3-x^2

<=>(x^5-x^4)+(x^3-x^2)

<=>x^4(x-1)+x^2(x-1)

<=>(x-1)(x^4+x^2)

c)x^5+x^3-x^2-1

<=>(x^5+x^3)-(x^2+1)

<=>x^3(x^2+1)-(x^2+1)

<=>(x^2+1)(x^3-1)

d)x^4-3x^3-x+3

<=>(x^4-3x^3)-(x-3)

<=>x^3(x-3)-(x_3)

<=>(x-3)(x^3-1)

4 tháng 8 2016

\(a,x^2.16-4xy+4y^2\)
\(=16.x^2-4xy+4y^2\)
\(=16.\left[x^2-4xy+\left(2y\right)^2\right]\)
\(=16.\left(x-2y\right)^2\)
\(b,x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^4+x^2\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
\(c,x^5+x^3-x^2-1\)
\(=x^3\left(x^2+1\right)-\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^3-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
\(d,x^4-3x^3-x+3\)
\(=x^3\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3-1\right)\)
\(=\left(x-3\right)\left(x-1\right)\left(x^2+x+1\right)\)

 

31 tháng 7 2016

a) (2x - 1)2 - (x + 3)2

= (2x - 1 - x - 3).(2x - 1 + x + 3)

= (x - 4).(3x + 2)

b) x2.(x - 3) + 12 - 4x

= x2.(x - 3) - 4x + 12

= x2.(x - 3) - 4.(x - 3)

= (x - 3).(x2 - 4)

= (x - 3).(x - 2).(x + 2)

28 tháng 9 2018

Áp dụng HĐT:

    a2 - b2 = (a - b)(a + b)

\(\left(2x-1\right)^2-\left(x+3\right)^2\)

\(=\left(2x-1-x-3\right)\left(2x-1+x+3\right)\)

\(=\left(x-4\right)\left(3x+2\right)\)

a) 2x + 2y - x2 - xy

= 2(x + y) + x(x + y)

= (x + y) (x + 2)

mk ko bít phân tích đúng ko đúng thì t i c  k nhé!! 245433463463564564574675687687856856846865855476457

12 tháng 7 2016

a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)

b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)

\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)

\(=\left(x+3\right)\left(8-x\right)\)

c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)

\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)

\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)

\(=4\left(3x+2\right)-4\left(3x-2\right)\)

\(=4\left(3x+2-3x+2\right)\)

=4.4=16

13 tháng 8 2016

dat \(x^2-2x+2=y\)

ta co pt

\(y^4+20x^2y^2+64x^4\)

\(=\left(8x^2\right)^2+2.8x^2.\frac{10}{8}y^2+\left(\frac{10^{ }}{8^{ }}y^2\right)^2-\frac{36}{64}y^4\)

\(=\left(8x^2+\frac{10}{8}y^2\right)^2-\left(\frac{6}{8}y^2\right)^2\)

\(=\left(8x^2+\frac{y^2}{2}\right)\left(8x^2+2y^2\right)\)

bạn thay y  nữa là xong

13 tháng 8 2016

\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+64x^4\)

\(=\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+100x^4-36x^4\)

\(=\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^4\)

\(=\left(x^4-4x^3+18x^2-8x+4\right)^2-\left(6x^2\right)^2\)

\(=\left(x^4-4x^3+24x^2-8x+4\right)\left(x^4-4x^3+12x^2-8x+4\right)\)

13 tháng 8 2016

\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)+64x^4\)

=\(\left[\left(x^2-2x+2\right)^4+2.10x^2\left(x^2-2x+2\right)^2+100x^4\right]\)-100x4+64x2

=\(\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^2\)

=\(\left[\left(x^2-2x+2\right)^2+4x^2\right].\left[\left(x^2-2x+2\right)^2+16x^2\right]\)

8 tháng 8 2016

a, x^2 -4+ (x-2)^2=(x-2)(x+2)+(x-2)^2=(x-2)(x+2+x-2)=(x-2)2x , b, x^3-2x^2+x-xy^2=x(x^2-2x+1-y^2)=x((x-1)^2-y^2)=x(x-1-y)(x-1+y)    c,x^3-4x^2-4x^2-12x+27=(x^3+27)-(4x^2+12x)=(x+3)(x^2-3x+9)-4x(x+3)=(x+3)(x^2-7x+9)                                                                                               cách giải đó pn.......

a) x2 - 4 + (x - 2)2

\(=\left(x^2-4\right)+\left(x-2\right)^2\)

\(=\left(x^2-2^2\right)+\left(x-2\right)^2\)

\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)

\(=\left(x-2\right)\left[\left(x+2\right)+\left(x-2\right)\right]\)

\(=\left(x-2\right)\left(x+2+x-2\right)\)

\(=\left(x-2\right)2x\)

b) x3 - 2x2 + x - xy2

\(=x\left(x^2-2x+1-y^2\right)\)

\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)

\(=x\left[\left(x-1\right)^2-y^2\right]\)

\(=x\left[\left(x-1-y\right)\left(x-1+y\right)\right]\)

\(=x\left(x-1-1\right)\left(x-1+y\right)\)

c) x3 - 4x2 - 12x + 27

\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)

\(=\left(x^3+3^3\right)-\left(4x^2+12x\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left[\left(x^2-3x+9\right)-4x\right]\)

\(=\left(x+3\right)\left(x^2-3x+9-4x\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)