Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x2 - 16 - 4xy + 4y2
= ( x2 - 4xy + 4y2 ) - 16
= ( x - 2y )2 - 42
= ( x - 2y - 4 )( x - 2y + 4 )
b) x5 - x4 + x3 - x2
= x2( x3 - x2 + x - 1 )
= x2[ x2( x - 1 ) + ( x - 1 ) ]
= x2( x - 1 )( x2 + 1 )
c) x( x + 4 )( x + 6 )( x + 10 ) + 128 < mình nghĩ là nên sửa đề như này :]>
= [ x( x + 10 ) ][ ( x + 4 )( x + 6 ) ] + 128
= ( x2 + 10x )( x2 + 10x + 24 ) + 128
Đặt t = x2 + 10x
bthuc <=> t( t + 24 ) + 128
= t2 + 24t + 128
= t2 + 16t + 8t + 128
= t( t + 16 ) + 8( t + 16 )
= ( t + 16 )( t + 8 )
= ( x2 + 10x + 16 )( x2 + 10x + 8 )
= ( x2 + 2x + 8x + 16 )( x2 + 10x + 8 )
= [ x( x + 2 ) + 8( x + 2 ) ]( x2 + 10x + 8 )
= ( x + 2 )( x + 8 )( x2 + 10x + 8 )
cảm ơn bạn câu c mình chép nhầm nó là 128 đó
1/ \(x^2+x-90=\left(x^2-10x\right)+\left(9x-90\right)=x\left(x-10\right)+9\left(x-10\right)=\left(x-10\right)\left(x+9\right)\)
2/ \(2x^2+4xy+2y^2=\left(2x^2+2xy\right)+\left(2xy+2y^2\right)=2x\left(x+y\right)+2y\left(x+y\right)=\left(x+y\right)\left(2x+2y\right)\)
3/ \(2y^2-14y+24=2\left(y^2-7y+12\right)=2\left[\left(y^2-4y\right)+\left(12-3y\right)\right]=2\left[y\left(y-4\right)-3\left(y-4\right)\right]\)
\(=2\left(y-4\right)\left(y-3\right)\)
4/ \(x^8+x^4+1=\left(x^8+x^7+x^6\right)-\left(x^7+x^6+x^5\right)+\left(x^5+x^4+x^3\right)-\left(x^3+x^2+x\right)+\left(x^2+x+1\right)\)
\(=x^6\left(x^2+x+1\right)-x^5\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)
\(=\left(x^2+x+1\right)\left[\left(x^6-x^5+x^4\right)-\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)\right]\)
\(=\left(x^2+x+1\right)\left[x^4\left(x^2-x+1\right)\right]-x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)\)
a)x^2.16-4xy+4y^2
<=>16.x^2-2x2y+(2y)^2
<=>16(x-2y)^2
b)x^5-x^4+x^3-x^2
<=>(x^5-x^4)+(x^3-x^2)
<=>x^4(x-1)+x^2(x-1)
<=>(x-1)(x^4+x^2)
c)x^5+x^3-x^2-1
<=>(x^5+x^3)-(x^2+1)
<=>x^3(x^2+1)-(x^2+1)
<=>(x^2+1)(x^3-1)
d)x^4-3x^3-x+3
<=>(x^4-3x^3)-(x-3)
<=>x^3(x-3)-(x_3)
<=>(x-3)(x^3-1)
\(a,x^2.16-4xy+4y^2\)
\(=16.x^2-4xy+4y^2\)
\(=16.\left[x^2-4xy+\left(2y\right)^2\right]\)
\(=16.\left(x-2y\right)^2\)
\(b,x^5-x^4+x^3-x^2\)
\(=x^4\left(x-1\right)+x^2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^4+x^2\right)\)
\(=x^2\left(x-1\right)\left(x^2+1\right)\)
\(c,x^5+x^3-x^2-1\)
\(=x^3\left(x^2+1\right)-\left(x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^3-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x^2+x+1\right)\)
\(d,x^4-3x^3-x+3\)
\(=x^3\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(x^3-1\right)\)
\(=\left(x-3\right)\left(x-1\right)\left(x^2+x+1\right)\)
a) (2x - 1)2 - (x + 3)2
= (2x - 1 - x - 3).(2x - 1 + x + 3)
= (x - 4).(3x + 2)
b) x2.(x - 3) + 12 - 4x
= x2.(x - 3) - 4x + 12
= x2.(x - 3) - 4.(x - 3)
= (x - 3).(x2 - 4)
= (x - 3).(x - 2).(x + 2)
Áp dụng HĐT:
a2 - b2 = (a - b)(a + b)
\(\left(2x-1\right)^2-\left(x+3\right)^2\)
\(=\left(2x-1-x-3\right)\left(2x-1+x+3\right)\)
\(=\left(x-4\right)\left(3x+2\right)\)
a) 2x + 2y - x2 - xy
= 2(x + y) + x(x + y)
= (x + y) (x + 2)
mk ko bít phân tích đúng ko đúng thì t i c k nhé!! 245433463463564564574675687687856856846865855476457
a)\(2x+2y-x^2-xy=2\left(x+y\right)-x\left(x+y\right)=\left(2-x\right)\left(x+y\right)\)
b)\(\left(x+3\right)^2-\left(2x-5\right)\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x+3\right)-\left(2x-5\right)\right]\)
\(=\left(x+3\right)\left(8-x\right)\)
c)\(\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(9x^2-4\right)\)
\(=\left(3x+2\right)^2+\left(3x-2\right)^2-2\left(3x-2\right)^2\)
\(=\left(3x+2\right)\left[\left(3x+2\right)-\left(3x-2\right)\right]+\left(3x-2\right)\left[\left(3x-2\right)-\left(3x+2\right)\right]\)
\(=4\left(3x+2\right)-4\left(3x-2\right)\)
\(=4\left(3x+2-3x+2\right)\)
=4.4=16
dat \(x^2-2x+2=y\)
ta co pt
\(y^4+20x^2y^2+64x^4\)
\(=\left(8x^2\right)^2+2.8x^2.\frac{10}{8}y^2+\left(\frac{10^{ }}{8^{ }}y^2\right)^2-\frac{36}{64}y^4\)
\(=\left(8x^2+\frac{10}{8}y^2\right)^2-\left(\frac{6}{8}y^2\right)^2\)
\(=\left(8x^2+\frac{y^2}{2}\right)\left(8x^2+2y^2\right)\)
bạn thay y nữa là xong
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+64x^4\)
\(=\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)^2+100x^4-36x^4\)
\(=\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^4\)
\(=\left(x^4-4x^3+18x^2-8x+4\right)^2-\left(6x^2\right)^2\)
\(=\left(x^4-4x^3+24x^2-8x+4\right)\left(x^4-4x^3+12x^2-8x+4\right)\)
\(\left(x^2-2x+2\right)^4+20x^2\left(x^2-2x+2\right)+64x^4\)
=\(\left[\left(x^2-2x+2\right)^4+2.10x^2\left(x^2-2x+2\right)^2+100x^4\right]\)-100x4+64x2
=\(\left[\left(x^2-2x+2\right)^2+10x^2\right]^2-36x^2\)
=\(\left[\left(x^2-2x+2\right)^2+4x^2\right].\left[\left(x^2-2x+2\right)^2+16x^2\right]\)
a, x^2 -4+ (x-2)^2=(x-2)(x+2)+(x-2)^2=(x-2)(x+2+x-2)=(x-2)2x , b, x^3-2x^2+x-xy^2=x(x^2-2x+1-y^2)=x((x-1)^2-y^2)=x(x-1-y)(x-1+y) c,x^3-4x^2-4x^2-12x+27=(x^3+27)-(4x^2+12x)=(x+3)(x^2-3x+9)-4x(x+3)=(x+3)(x^2-7x+9) cách giải đó pn.......
a) x2 - 4 + (x - 2)2
\(=\left(x^2-4\right)+\left(x-2\right)^2\)
\(=\left(x^2-2^2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\)
\(=\left(x-2\right)\left[\left(x+2\right)+\left(x-2\right)\right]\)
\(=\left(x-2\right)\left(x+2+x-2\right)\)
\(=\left(x-2\right)2x\)
b) x3 - 2x2 + x - xy2
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left[\left(x-1-y\right)\left(x-1+y\right)\right]\)
\(=x\left(x-1-1\right)\left(x-1+y\right)\)
c) x3 - 4x2 - 12x + 27
\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)
\(=\left(x^3+3^3\right)-\left(4x^2+12x\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)
\(=\left(x+3\right)\left[\left(x^2-3x+9\right)-4x\right]\)
\(=\left(x+3\right)\left(x^2-3x+9-4x\right)\)
\(=\left(x+3\right)\left(x^2-7x+9\right)\)
\(x^3-2x^2-4xy^2+x\)
\(=x\left(x^2-2x-4y^2+1\right)\)
\(=x\left(\left(x-1\right)^2-\left(2y\right)^2\right)\)
\(=x\left(x-1-2y\right)\left(x-1+2y\right)\)