K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 10 2021

Lời giải:
a.

$x^4+10x^3+26x^2+10x+1$

$=(x^4+10x^3+25x^2)+x^2+10x+1$

$=(x^2+5x)^2+2(x^2+5x)+1-x^2$

$=(x^2+5x+1)^2-x^2=(x^2+5x+1-x)(x^2+5x+1+x)$

$=(x^2+4x+1)(x^2+6x+1)$

b.

$x^4+x^3-4x^2+x+1$

$=(x^4-x^2)+(x^3-x^2)+(x-x^2)+(1-x^2)$

$=x^2(x-1)(x+1)+x^2(x-1)-x(x-1)-(x-1)(x+1)$

$=(x-1)[x^2(x+1)+x^2-x-(x+1)]$

$=(x-1)(x^3+2x^2-2x-1)$

$=(x-1)[(x^3-1)+(2x^2-2x)]=(x-1)[(x-1)(x^2+x+1)+2x(x-1)]$

$=(x-1)(x-1)(x^2+x+1+2x)=(x-1)^2(x^2+3x+1)$

31 tháng 7 2017

a,x^4+2x^3-4x-4

=(x^3+2x^3)-(4x+4)

=x^3(x+2)-4(x+2)

=(x^3-4)(x+2)

31 tháng 7 2017

\(X^4+2X^3-4X-4\)

\(=\left(X^2\right)^2+2X^3-4X-2^2\)

\(=\left[\left(X^2\right)^2-2^2\right]+\left[2X^3-4X\right]\)

\(=\left(X^2+2\right)\left(X^2-2\right)+2X\left(X^2-2\right)\)

\(=\left(X^2-2\right)\left(X^2+2+2X\right)\)

6 tháng 1 2018

 = (x^4-4x^3)+(3x^3-12x^2)+(2x^2-8x)-(2x-8)

 = x^3.(x-4)+3x^2.(x-4)+2x.(x-4)-2.(x-4)

 = (x-4).(x^3+3x^2+2x-2)

Tk mk nha

1 tháng 3 2016

a/ x+5x+10x-4

=(x4- 4)+(5x+ 10x)

=(x2+2) (x2-2) + 5x(x2 +2 )

=(x2+2)(x2 -2 +5x)

b/x5 - x+x3 -x2 +x-1

=x4(x-1)+x3(x-1)+(x-1)

=(x-1)(x4+x3+1)

2 tháng 8 2018

\(x^4-4x^3+4x^2\)

\(=x^2\left(x^2-4x+4\right)\)

\(=x^2\left(x-2\right)^2\)

\(3x^2+10x+3\)

\(=3x^2+x+9x+3\)

\(=x\left(3x+1\right)+3\left(3x+1\right)\)

\(=\left(x+3\right)\left(3x+1\right)\)

2 tháng 8 2018

\(x^4-4x^3+4x^2\)

\(=x^2.\left(x^2-2.x.2+2^2\right)\)

\(=x^2.\left(x-2\right)^2\)

\(1.\)

\(x^2-2x+1-xy-y=\left(x-1\right)^2-y\left(x-1\right)=\left(x-1\right)\left(x-1-y\right)\)

\(2.\)

\(x^3-4x^2+4x-2x+2=x\left(x^2-4x+4\right)-2\left(x-1\right)=x\left(x-2\right)^2-2\left(x-1\right)\)

\(3.\)

\(10x-25-x^2+4y^2=4y^2-\left(x^2-10x+25\right)=4y^2-\left(x-5\right)^2=\left(2y+x-5\right)\left(2y-x+5\right)\)

\(4.\)

\(4x^2-2x+2xy-y=2x\left(2x-1\right)+y\left(2x-1\right)=\left(2x-1\right)\left(2x+y\right)\)

\(5.\)

\(4x\left(x-3\right)^2-3x^2+9x=4x\left(x-3\right)^2-3x\left(x-3\right)=\left(x-3\right)\left(4x^2-12x-3x\right)\)

3 tháng 9 2016

Đặt \(Q\left(x\right)=x^4-x^3-10x^2+2x+4\)

Giả sử nhân tử khi phân tích P(x) là \(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Khai triển : \(P\left(x\right)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+x^3\left(c+a\right)+x^2\left(d+ac+b\right)+x\left(ad+bc\right)+bd\)

Áp dụng hệ số bất định : \(\begin{cases}c+a=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) . Giải ra được \(\begin{cases}a=-3\\b=-2\\c=2\\d=-2\end{cases}\)

Vậy \(P\left(x\right)=\left(x^2-3x-2\right)\left(x^2+2x-2\right)\)

 

3 tháng 9 2016

Giả sử:

\(P\left(x\right)=\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

\(=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd\)

\(=x^4+\left(a+c\right)x^3+\left(d+ac+b\right)x^2+\left(ad+bc\right)x+bd\)

Ta có:

\(\begin{cases}a+c=-1\\d+ac+b=-10\\ad+bc=2\\bd=4\end{cases}\) \(\Rightarrow\begin{cases}a=1\\b=1\\d=4\\c=-15\end{cases}\)

\(\Rightarrow P\left(x\right)=\left(x^2+x+1\right)\left(x^2-15x+4\right)\)

25 tháng 8 2021

\(B=x^8+2x^5-2x^4+x^2-2x-100+10x\left(x^4+x\right)+\left(5x-1\right)^2\)

\(=x^8+2x^5-2x^4+x^2-2x-100+10x^5+25x^2-10x+1\)

\(=x^8+12x^5-2x^4+36x^2-12x-99\)

\(=x^8+6x^5+9x^4+6x^5+36x^2+54x-11x^4-66x-99\)

\(=x^4\left(x^4+6x+9\right)+6x\left(x^4+6x+9\right)-11\left(x^4+6x+9\right)\)

\(=\left(x^4+6x+9\right)\left(x^4+6x-11\right)\)

Câu 2 nha

\(a,x^4+2x^3+x^2\)

\(=x^2\left(x^2+2x+1\right)\)

\(=x^2\left(x+1\right)^2\)

\(c,x^2-x+3x^2y+3xy^2+y^3-y\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)^3-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2-1\right)\)