Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(a^3-b^3\right)+\left(a-b\right)^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)^2\)
\(\left(a-b\right)\left(a^2+ab+b^2+a-b\right)\)
b) \(\left(8a^3-27b^3\right)-2a\left(4a^2-9b^2\right)\)
\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2\right)-2a\left(2a-3b\right)\left(2a+3b\right)\)
\(=\left(2a-3b\right)\left(4a^2+6ab+9b^2-4a^2-6ab\right)\)
\(=\left(2a-3b\right)\cdot9b^2\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)+a^2-2ab+b^2\)
= ...........
\(\left(2a+b\right)^2-\left(2a+a\right)^2\)
\(=\left(2a+b-2a-a\right)\left(2a+b+2a+a\right)\)
\(=\left(b-a\right)\left(5a+b\right)\)
\(\left(2a+b\right)^2-\left(2a+a\right)^2\)
\(=\left(2a+b\right)^2-\left(3a\right)^2\)
\(=\left(2a+b-3a\right)\left(2a+b+3a\right)\)
\(=\left(b-a\right)\left(5a+b\right)\)
\(a^2+b^2+2a-2b-2ab=a^2-2ab+b^2+2\left(a-b\right)\)
\(=\left(a-b\right)^2+2\left(a-b\right)\)
\(=\left(a-b\right)\left(a-b+2\right)\)
\(4a^2-4b^2-4a+1=4a^2-4a+1-\left(2b\right)^2\)
\(=\left(2a-1\right)^2-\left(2b\right)^2\)
\(=\left(2a-1-2b\right)\left(2a-1+2b\right)\)
Từ \(4a^2+b^2=5ab\), ta có: \(4a^2-4ab-ab+b^2\)=0
Hay: (a-b) (4a-b)=0
Vì: 2a>b>0 nên 4a-b \(\ne\)0 .
Từ: (.) \(\Rightarrow\)
Từ: a-b=0 . Tức là: a=b
Thay a=b vào C ta được :
C= \(\frac{ab}{4a^2-b^2}=\frac{a^2}{4a^2-a^2}=\frac{1}{3}\)(do a\(\ne\)0)
b)\(2a^2-3+5a\)
\(=\left(2a^2+6a\right)-\left(a+3\right)\)
\(=\left(a+3\right)\left(2a-1\right)\)
d)\(2a^2-5-3a\)
\(=\left(2a^2+2a\right)-\left(5a+5\right)\)
\(=\left(a+1\right)\left(2a-5\right)\)
a) \(a^2-3-2a\)
\(=a^2-2a+1-4\)
\(=\left(a^2-2a+1\right)-2^2\)
\(=\left(a-1\right)^2-2^2\)
\(=\left(a-1-2\right)\left(a-1+2\right)\)
\(=\left(a-3\right)\left(a+1\right)\)
c) \(4a+a^2+3\)
\(=a^2+4a+4-1\)
\(=\left(a^2+4a+4\right)-1^2\)
\(=\left(a+2\right)^2-1^2\)
\(=\left(a+2-1\right)\left(a+2+1\right)\)
\(=\left(a+1\right)\left(a+3\right)\)
\(a^6-a^4+2a^3+2a^2\)
\(=\left[\left(a^3\right)^2-\left(a^2\right)^2\right]+2\left(a^2+a^3\right)\)
\(=\left(a^3-a^2\right)\left(a^3+a^2\right)+2\left(a^3+a^2\right)\)
\(=\left(a^3-a^2+2\right)\left(a^3+a^2\right)\)
\(=a^2.\left(a^3-a^2+2\right)\left(a+1\right)\)
\(a^6-a^4+2a^3+2a^2=a^2\left(a^4-a^2+2a+2\right)=a^2\left[a^2\left(a^2-1\right)+2\left(a+1\right)\right]\)
\(=a^2\left[a^2\left(a-1\right)\left(a+1\right)+2\left(a+1\right)\right]=a^2\left(a+1\right)\left(a^3-a^2+2\right)=a^2\left(a+1\right)^2\left(a^2-2a+2\right)\)
=(a2 +1)2-(2a)2
=(a2+1+2a)(a2+1-2a)
=(a+1)2(a-1)2
mình làm thế ko biết có đúng hay ko
( a2 + 1 )2 - 4a2
= ( a2 + 1 )2 - ( 2a )2
= ( a2 + 1 + 2a ) ( a2 + 1 - 2a )
........
\(8a^4-2a^2-4a+2\)
\(=2\cdot\left(4a^4-a^2-2a+1\right)\)
\(=2\cdot\left(2a-1\right)\cdot\left(2a^3+a^2-1\right)\)
\(8a^4-2a^2-4a+2\)
\(=2\left(4a^4-a^2-2a+1\right)\)
\(=2\left(4a^4-2a^3+2a^3-a^2-2a+1\right)\)
\(=2\left(2a-1\right)\left(2a^3+a^2-1\right)\)