K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2021

Sửa ý đầu: \(\left(2a+3\right)x-\left(2a+3\right)y+2a+3\)

\(=\left(2a=3\right)\left(x-y+1\right)\)

\(\left(a-b\right)c+\left(b-a\right)y-a+b\)

\(=\left(a-b\right)c-\left(a-b\right)y-\left(a-b\right)\)

\(=\left(a-b\right)\left(c-y-1\right)\)

\(81a^2+18a+1\)

\(=\left(9a+1\right)^2\)

\(a^3-1\)

\(=\left(a-1\right)\left(a^2+a+1\right)\)

\(a^5-b^5\)

Áp dụng công thức: \(a^{2n+1}-b^{2n+1}=\left(a-b\right)\left(a^{2n}+a^{2n-1}.b+...+b^{2n-1}.a+b^{2n}\right)\)

\(=\left(a-b\right)\left(a^4+a^3b+a^2b^2+ab^3+b^{\text{4}}\right)\)

18 tháng 12 2018

Phân tích đa thức thành nhân tử
a) (1-2x)(1+2x)-x(x+2)(x-2)

\(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=\left(1-x^3\right)+\left(4x-4x^2\right)\)

\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)

\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)

\(=\left(1-x\right)\left(x^2+5x+1\right)\)

18 tháng 12 2018

\(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)

\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2+6ab^3-b^4\)

\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3\right)+6ab\left(a-b\right)\left(a+b\right)-8ab\left(a-b\right)\left(a+b\right)\)

\(=\left(a-b\right)\left(a^3+a^2b+ab^2+b^3+6a^2b+6ab^2-8a^2b-8ab^2\right)\)

\(=\left(a-b\right)\left(a^3-a^2b-ab^2+b^3\right)\)

\(=\left(a-b\right)\left[a^2\left(a-b\right)-b^2\left(a-b\right)\right]\)

\(=\left(a-b\right)^3\left(a+b\right)\)

20 tháng 7 2016

Bài 2:

a) =a2b - a2c + b2c - ab2 + ac2 - bc2

=(a2b - bc2) - (a2c - ac2) + (b2c - ab2)

=b(a-c)(a+c) - ac(a-c) - b2(a-c)

=(a - c)(ab -bc - ac - b2)

b)=(1 - 2a + a2) - (b- 2bc + c2)

=(1 - a)- (b - c)2

=(c - b - a + 1)(b - c - a + 1)

13 tháng 10 2016

a) = (xyz+xy) +(z+1) +(yz+zx)+(x+y)

 = xy(z+1) +(z+1)+z(x+y)+(x+y)

= (z+1)(xy+1)+(x+y)(Z+1)

=(z+1)(xy+1+x+y)

20 tháng 8 2017

dễ mà bn

mk bk lm mà lm biếng gõ qá

3 tháng 10 2015

1)

b) \(\left(x-z\right)^2-y^2+2y-1\)

\(=\left(x^2-2xz+z^2\right)-\left(y-1\right)^2\)

\(=\left(y-z\right)^2-\left(y-1\right)^2\)

\(=\left[\left(x-z\right)+\left(y-1\right)\right]\cdot\left[\left(x-z\right)-\left(y+1\right)\right]\)

\(=\left(x-z+y-1\right)\cdot\left(x-z-y-1\right)\)

 

16 tháng 7 2019

\(\left(2a+b\right)^2-\left(2a+a\right)^2\)

\(=\left(2a+b-2a-a\right)\left(2a+b+2a+a\right)\)

\(=\left(b-a\right)\left(5a+b\right)\)

16 tháng 7 2019

\(\left(2a+b\right)^2-\left(2a+a\right)^2\)

\(=\left(2a+b\right)^2-\left(3a\right)^2\)

\(=\left(2a+b-3a\right)\left(2a+b+3a\right)\)

\(=\left(b-a\right)\left(5a+b\right)\)