K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2016

\(\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

cộng ((x+y)^3 + z^3) vào 1 nhóm, -3xy(x+y)-3xyz vào 1 nhóm dc

\(\left(x+y+z\right)\left(\left(x+y\right)^2-\left(x+y\right)z+z^2\right)-3yz\left(x+y+z\right)\)xuất hiện nhân tử chung x+y+z

\(\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2-3xy\right)\)

Kết quả: \(\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

3 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

23 tháng 10 2018

A=(x+y)\(^3\)+z\(^3\)+3(x+y)z(x+y+z)-x\(^3\)-y\(^3\)-z\(^3\)                                                                                                    

   =x\(^3\)+y\(^3\)+3xy(x+y)+3(x+y)z(x+y+z)-x\(^3\)-y\(^3\)

   =3(x+y)(xy+zx+zy+z\(^2\))

    =3(x+y)\([\)x(y+z)+z(y+z)\(]\)

    =3(x+y)(y+z)(x+z)

  (bạn chỉ cần dùng hằng đẳng thức là ok ngay)

10 tháng 11 2021

x(y+z)^2 - y(z-x)^2 +z(x+y)^2 - x^3 + y^3 - z^3 - 4xyz

=xy^2+2xyz+xz^2-yz^2+2xyz-x^2y+x^2z+2xyz+zy^2-x^3+y^3-z^3-4xyz

=xy^2+xz^2-yz^2-x^2y+x^2z+y^2z-x^3+y^3-z^3+2xyz

=(xy^2+2xyz+xz^2)-x^3-(yz^2+2xyz+x^2y)+y^3+(x^2z+2xyz+y^2z)-z^3

=x[(y+z)^2-x^2)-y[(z+x)^2-y^2]+z[(x+y)^2-z^2]

=x(-x+y+z)(x+y+z)-y(x-y+z)(x+y+z)+z(x+y-z)(x+y+z)

=(x+y+z)[-x^2+xy+xz-xy+y^2-yz+xz+yz-z^2]

=(x+y+z)[-x(x-y-z)-y(x-y-z)+z(x-y-z)]

=(x+y+z)(x-y-z)(z-x-y)

2 tháng 10 2021

\(x^2\left(x-3\right)^2-\left(x-3\right)^2-x^2+1\)

\(=\left(x^2-1\right)\left(x-3\right)^2-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x-3-1\right)\left(x-3+1\right)\)

\(=\left(x^2-1\right)\left(x-4\right)\left(x-2\right)\)

19 tháng 7 2018

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)

\(=-3x^2y+3xy^2-3y^2z+3yz^2-3z^2x+3zx^2\)

  =  -3xy(x-y) - 3yz(y-z) - 3zx(z-x)

19 tháng 7 2018

Bạn có thể tham khảo tiếp bài của mình ở đây : https://olm.vn/hoi-dap/question/1264685.html

17 tháng 8 2018

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+z^3+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3-z^3\)

\(=x^3+y^3+3xy\left(x+y\right)+3z\left(x+y\right)\left(x+y+z\right)-x^3-y^3\)

\(=3\left(x+y\right)\left(xy+xz+yz+z^2\right)\)

\(=3\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

1 tháng 8 2017

ai giúp hộ kìa

1 tháng 11 2016

a) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).

 

 

1 tháng 11 2016

giải giùm mình bài b luôn đi