Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(-\frac{x^4}{4}+2x^2y^3-4y^6=-\left(\frac{x^4}{4}-2x^2y^3+4y^6\right)=-\left[\left(\frac{x^2}{2}\right)^2-2.\frac{x^2}{2}.2y^3+\left(2y^3\right)^2\right]=-\left(\frac{x^2}{2}-2y^3\right)\)
a. \(=x^3+2^3+1^3-x^3\)
\(=\left(x^3-x^3\right)+8+1\)
\(=0+8+1\)
\(=9\)
Bài 1 :
a) ( x + 2 )( x2 - 2x + 4 ) + (1 - x)(1+x+ + x2 )
= ( x3 - 8 ) + ( 1 - x3 )
= x3 - 8 + 1 - x3
= 7
b) 7x( 4x - 2) - ( x - 3)( x+1 ) + 16x
= 28x2 - 14x - x2 - x + 3x + 3 + 16x
= 27x2 + 3
a, Ta cần phải chứng minh (a+b)(\(\frac{1}{a}+\frac{1}{b}\))=1+\(\frac{a}{b}+\frac{b}{a}+1=2+\frac{a}{b}+\frac{b}{a}\ge4\) vì
\(\frac{a}{b}+\frac{b}{a}\ge2\)(cái này bạn tìm hiểu kĩ hơn nha,nhưng mk nghĩ thế này đc rồi đó)
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b.
d,(a+b+c)(\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\))=1+\(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)
=3+(\(\frac{a}{b}+\frac{b}{a}\))+(\(\frac{a}{c}+\frac{c}{a}\))+(\(\frac{c}{b}+\frac{b}{c}\))\(\ge\)3+2+2+2=9
Dấu ''='' xảy ra \(\Leftrightarrow\)a=b=c
e,Xét hiệu :
\(^{a^3+b^3+c^3-3abc=\left(a^2+b^2+c^2-ab-ac-bc\right)\left(a+b+c\right)}\) => cái này bạn nhân ra trước rồi phân tích đa thức thành nhân tử nha.
=\(\left(a+b+c\right)\frac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{2}\ge0\) \(\Rightarrow\)ĐPCM
Bài 1 :
a) \(x^8+x+1\)
\(=x^8-x^2+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5+x^2\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=\left(x^5+x^2\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^6-x^5+x^3-x^2\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^6-x^5+x^4-x^2+1\right)\left(x^2+x+1\right)\)
b) \(64x^4+y^4\)
\(=\left(8x^2\right)^2+\left(y^2\right)^2+2.8x^2.y^2-16x^2y^2\)
\(=\left(8x^2+y^2\right)^2-\left(4xy\right)^2\)
\(=\left(8x^2+y^2-4xy\right)\left(8x^2+y^2+4xy\right)\)
bằng cái lol ấy
bằng 1 số ........