K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2021

\(a,=\left(x-1\right)^4-2\left(x-1\right)^2+1\\ =\left[\left(x-1\right)^2-1\right]^2\\ =\left(x^2-2x-2\right)^2\\ b,=\left[\left(x+1\right)\left(x+5\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]-4\\ =\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4\\ =\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36\\ =\left(x^2+6x+4\right)\left(x^2+6x+9\right)\\ =\left(x+3\right)^2\left(x^2+6x+4\right)\)

12 tháng 8 2015

1)a2(b-c)+b2(c-a)+c2(a-b)

=a2b-a2c+b2c-b2a+c2a-c2b

=(a2b-c2b)+(b2c-b2a)+(c2a-a2c)

=b.(a2-c2)-b2.(a-c)-ac.(a-c)

=b.(a-c)(a+c)-b2(a-c)-ac(a-c)

=(a-c)(ab+bc-b2-ac)

=(a-c)[(ab-ac)+(bc-b2)]

=(a-c)[a.(b-c)-b.(b-c)]

=(a-c)(b-c)(a-b)

28 tháng 7 2016

\(=x^4+4x^2y^2+4y^4-4x^2y^2\)

\(=\left(x^2+2y^2\right)^2-4x^2y^2\)

\(=\left(x^2+2y^2-2xy\right)\left(x^2+2y^2+2xy\right)\)

28 tháng 7 2016

câu b

=x^4+x^3+x^2+2.(x^2+x+1)

=(x^2+2).(x^2+x+1)

17 tháng 10 2015

A) 1/2 x(x^2-4)+4(x+2)

=1/2x(x-2)(x+2)+4(x+2)

=(x+2)(1/2x^2-x+4)

b) 21(x-y)^2-7(x-y)^3

= (x-y)^2(21-7x+7y)

=(x-y)^2.7(3-x+y)

c) 1/8x^3-3/4x^2+3/2x-1

=(1/2x)^3-3.(1/2x)^2.1+3.1/2x.1^2-1

=(1/2x-1)^3

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

28 tháng 7 2017

a, \(\left(x^2-2x\right)\left(x^2-2x-1\right)-6\)

Đặt \(x^2-2x=a\)

Thay vào biểu thức ta đc:

\(a.\left(a-1\right)-6=a^2-a-6\) \(=a^2-3a+2a-6=a\left(a-3\right)+2\left(a-3\right)\)

\(=\left(a-3\right).\left(a+2\right)\)

\(\Rightarrow\left(x^2-2x\right)\left(x^2-2x-1\right)-6=\left(x^2-2x-3\right)\left(x^2-2x+2\right)\)

b, \(\left(x^2+x+4\right)^2+8x\left(x^2+x+4\right)+15x^2\)

\(=\left[\left(x^2+x+4\right)^2+6x\left(x^2+x+4\right)+9x^2\right]+\left[2x\left(x^2+x+4\right)+6x^2\right]\)

\(=\left(x^2+x+4+3x\right)^2+2x\left(3x+x^2+x+4\right)\)

\(=\left(x^2+4x+4\right)\left(x^2+4x+4+2x\right)\) \(=\left(x+2\right)^2\left(x^2+6x+4\right)\)

28 tháng 7 2017

bn ơi câu a bn biến đổi ra a2-a-6 vậy -1 đâu bn

15 tháng 8 2016

bậc to thế ==

16 tháng 8 2016


 

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}