K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2018

Phân tích đa thức sau thành nhân tử

a)4x^2 + y^2 - 4xy = (2x)^2 - 4xy + y^2

= (2x - y)^2

b)27+9x^2+27x+x^3 = 3^3 + 9x^2 + 27x + x^3

= (3 + x)^3

c)8z^3+1 = (2z)^3 + 1 = (2z + 1)(4z^2 - 2z + 1)

d)(2z-3)^2-16 = (2z - 3)^2 - 4^2

= (2z - 3 - 4)(2z - 3 + 4)

= (2z - 7)(2z + 1)

e)(2x-7)^2-(x+2)^2 = (2x - 7 - x - 2)(2x - 7 + x + 2)

= (x - 9)(3x - 5)

3 tháng 9 2018

\(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

1 tháng 10 2020

\begin{array}{l} a){\left( {ab - 1} \right)^2} + {\left( {a + b} \right)^2}\\  = {a^2}{b^2} - 2ab + 1 + {a^2} + 2ab + {b^2}\\  = {a^2}{b^2} + 1 + {a^2} + {b^2}\\  = {a^2}\left( {{b^2} + 1} \right) + \left( {{b^2} + 1} \right)\\  = \left( {{a^2} + 1} \right)\left( {{b^2} + 1} \right)\\ c){x^3} - 4{x^2} + 12x - 27\\  = {x^3} - 27 + \left( { - 4{x^2} + 12x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) - 4x\left( {x - 3} \right)\\  = \left( {x - 3} \right)\left( {{x^2} + 3x + 9 - 4x} \right)\\  = \left( {x - 3} \right)\left( {{x^2} - x + 9} \right)\\ b){x^3} + 2{x^2} + 2x + 1\\  = {x^3} + 2{x^2} + x + x + 1\\  = x\left( {{x^2} + 2x + 1} \right) + \left( {x + 1} \right)\\  = x{\left( {x + 1} \right)^2} + \left( {x + 1} \right)\\  = \left( {x + 1} \right)\left( {x\left( {x + 1} \right) + 1} \right)\\  = \left( {x + 1} \right)\left( {{x^2} + x + 1} \right)\\ d){x^4} - 2{x^3} + 2x - 1\\  = {x^4} - 2{x^3} + {x^2} - {x^2} + 2x - 1\\  = {x^2}\left( {{x^2} - 2x + 1} \right) - \left( {{x^2} - 2x + 1} \right)\\  = \left( {{x^2} - 2x + 1} \right)\left( {{x^2} - 1} \right)\\  = {\left( {x - 1} \right)^2}\left( {x - 1} \right)\left( {x + 1} \right)\\  = {\left( {x - 1} \right)^3}\left( {x + 1} \right)\\ e){x^4} + 2{x^3} + 2{x^2} + 2x + 1\\  = {x^4} + 2{x^3} + {x^2} + {x^2} + 2x + 1\\  = {x^2}\left( {{x^2} + 2x + 1} \right) + \left( {{x^2} + 2x + 1} \right)\\  = \left( {{x^2} + 2x + 1} \right)\left( {{x^2} + 1} \right)\\  = {\left( {x + 1} \right)^2}\left( {{x^2} + 1} \right) \end{array}

\(8-27x^3\)

\(=2^3-\left(3x\right)^3\)

\(=\left(2-3x\right)\left(4+6x+9x^2\right)\)

26 tháng 11 2016

a) \(8-27x^3=\left(2-x\right)\left(4+6x+9x^2\right)\)

b) \(27+27x+9x^2+x^3=\left(3+x\right)^3\)

c) \(x^3+8y^3=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)

15 tháng 9 2019

1

\(\left(2xy+1\right)^2-\left(2x+y\right)^2=\left(2xy+1-2x-y\right)\left(2xy+1+2x+y\right)\)

3

\(\left(x^2+y^2-z^2\right)^2-4x^2y^2=\left(x^2+y^2-z^2-2xy\right)\left(x^2+y^2-z^2+2xy\right)\)

\(=\left(x-y-z\right)\left(x-y+z\right)\left(x+y-z\right)\left(x+y+z\right)\)

4

\(9x^2+90x+225-\left(x-7\right)^2=9\left(x^2+10x+25\right)-\left(x-7\right)^2\)

\(=9\left(x+5\right)^2-\left(x+7\right)^2\)

\(=\left(3x+15-x-7\right)\left(3x+15+x+7\right)\)

Rút gọn nốt:(

25 tháng 10 2018

Bài1: Phân tích các đa thức sau thành nhân tử

a)36-4x2+4xy-y2

\(=6^2-\left(4x^2-4xy+y^2\right)\)

\(=6^2-\left(2x-y\right)^2\)

\(=\left(6+2x-y\right)\left(6-2x+y\right)\)

b)2x4+3x2-5

\(=2x^4-2x^2+5x^2-5\)

\(=2x^2\left(x^2-1\right)+5\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x^2-1\right)\)

\(=\left(2x^2+5\right)\left(x-1\right)\left(x+1\right)\)

25 tháng 10 2018

B1:a)\(36-4x^2+4xy-y^2=36-\left(4x^2-4xy+y^2\right)=6^2-\left(2x-y\right)^2\)

\(=\left(6-2x+y\right)\left(6+2x-y\right)\)

c)\(a^3-ab^2+a^2+b^2-2ab=a\left(a^2-b^2\right)+\left(a-b\right)^2\)\(=a\left(a-b\right)\left(a+b\right)+\left(a-b\right)^2=\left(a-b\right)\left(a^2+ab+a-b\right)\)

d)\(x^2-\left(a^2+b^2\right)x+a^2b^2=x^2-a^2x-b^2x+a^2b^2\)\(=x\left(x-a^2\right)-b^2\left(x-a^2\right)=\left(x-a^2\right)\left(x-b^2\right)\)

e)\(x\left(x-y\right)+x^2-y^2=x\left(x-y\right)+\left(x-y\right)\left(x+y\right)\)\(=\left(x-y\right)\left(x+x+y\right)=\left(x-y\right)\left(2x+y\right)\)

30 tháng 10 2016

a) (x-y+5)2-2(x-y+5)+1

=(x-y+5)-2(x-y+5).1+12

=(x-y+5+1)2

=(x-y+6)2

30 tháng 10 2016

b) x5 + x +1 = x5 + x + 1 + x2 - x2

=( x5 - x2) + (x2 + x +1)

=x2(x3 - 1) + (x2 +x +1)

=x2(x - 1)(x2 + x +1) + (x2 + x +1)

=(x2 + x +1)(x3 - x2 +1)

15 tháng 7 2018

\(a,36x^2-\left(3x-2\right)^2=\left(6x-3x+2\right)\left(6x+3x-2\right)\)

\(=\left(3x+2\right)\left(9x-2\right)\)

phần b,c,d lm tg tự

\(e,16x^2-24xy+9y^2=\left(4x-3y\right)^2\)

22 tháng 9 2017

a) 9 . ( 2x + 3 )2 - 4 . ( x + 1 )2

= 32 . ( 2x + 3 )2 - 22 . ( x + 1 )

= [ 3 . ( 2x + 3 ) ] 2 - [ 2 . ( x + 1 ) ]

= ( 6x + 9 )2 - ( 2x + 2 )2

= [ ( 6x + 9 ) - ( 2x + 2 ) ] . [ ( 6x + 9 ) + ( 2x + 2 ) ]

= ( 6x + 9 - 2x - 2 ) . ( 6x + 9 + 2x + 2 )

= ( 4x + 7 ) . ( 8x + 11 )

b) 27x3 + \(\dfrac{y^3}{8}\) = ( 3x )3 + \(\left(\dfrac{y}{2}\right)^{^{ }3}\)

= ( 3x + \(\dfrac{y}{2}\) ) . ( 9x2 - \(\dfrac{3}{2}\)xy + \(\dfrac{y^2}{4}\) )

c) ( x + y )3 - ( x - y )3

= [ ( x + y ) - ( x - y )] . [ ( x + y )2 + ( x + y ) . ( x - y ) + ( x - y )2

= ( x + y - x + y ) . [ ( x2 + 2xy + y2 ) ] + ( x2 - y2 ) + ( x2 - 2xy + y2 ) ]

= 2y . ( x2 + 2xy + y2 + x2 - y2 + x2 - 2xy + y2 )

= 2y . ( 3x2 + y2 )

= 6y . ( x2 + y2 )

22 tháng 9 2017

bỏ 6y . (x2 - y2 ) đi

28 tháng 10 2018

a) \(x^3+2x^2y+xy^2-4xz^2=x\left(x^2+2xy+y^2-4z^2\right)=x\left[\left(x+y\right)^2-\left(2z\right)^2\right]\)

\(=x\left(x+y-2z\right)\left(x+y+2z\right)\)

b)\(-8x^3+12x^2y-6xy^2+y^3=y^3+3.y.\left(2x\right)^2-3.y^2.2x-\left(2x\right)^3\)\(=\left(y-2x\right)^3\)

c)\(6x^2+7x-5=2x\left(3x+5\right)-\left(3x+5\right)=\left(3x+5\right)\left(2x-1\right)\)

d)\(x^4+64y^4=\left(x^2\right)^2+2.x^2.8y^2+\left(8y^2\right)^2-16x^2y^2=\left(x^2+8y^2\right)-\left(4xy\right)^2\)

\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)

e)\(x\left(2-x\right)-x+2=x\left(2-x\right)+\left(2-x\right)=\left(2-x\right)\left(x+1\right)\)

f)\(2x^2+3x-2=2x\left(x+2\right)-\left(x+2\right)=\left(x+2\right)\left(2x-1\right)\)

h)\(3x^2-6xy+3y^2-12z^2=3\left(x^2-2xy+y^2-4z^2\right)=3\left[\left(x-y\right)^2-\left(2z\right)^2\right]\)

\(=3\left(x-y-2z\right)\left(x-y+2z\right)\)

g)\(x^3-3x^2-9x+27=x^2\left(x-3\right)-9\left(x-3\right)=\left(x-3\right)\left(x^2-9\right)\)\(=\left(x-3\right)^2\left(x+3\right)\)

B2: \(x^3-5x=0\Rightarrow x\left(x^2-5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x^2-5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=5\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt{5}\end{cases}}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=5\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\\orbr{\begin{cases}x=\sqrt{5}\\x=-\sqrt{5}\end{cases}}\end{cases}}\)

24 tháng 7 2018

a/ \(x^3-5x^2+8x-4\)

\(\left(x^3-x^2\right)-\left(4x^2-4x\right)+\left(4x-4\right)\)

\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)\)

\(\left(x-1\right)\left(x^2-4x+4\right)\)

\(\left(x-1\right)\left(x-2\right)^2\)

b/ \(x^3-x^2+x-1\)

\(\left(x^3-x^2\right)+\left(x-1\right)\)

\(x^2\left(x-1\right)+\left(x-1\right)\)

\(\left(x-1\right)\left(x^2+1\right)\)