Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải:
a) 3x - 6y = 3 . x - 3 . 2y = 3(x - 2y)
b) 2525x2 + 5x3 + x2y = x2 (2525 + 5x + y)
c) 14x2y – 21xy2 + 28x2y2 = 7xy . 2x - 7xy . 3y + 7xy . 4xy = 7xy(2x - 3y + 4xy)
d) 2525x(y - 1) - 2525y(y - 1) = 2525(y - 1)(x - y)
e) 10x(x - y) - 8y(y - x) =10x(x - y) - 8y[-(x - y)]
= 10x(x - y) + 8y(x - y)
= 2(x - y)(5x + 4y)
a,\(3x-6y=3\left(x-2y\right)\)
b,\(x^2(\dfrac{2}{5}+5x+y)\)
c,\(7xy\left(2x-3y+4xy\right)\)
d,\(\dfrac{2}{5}x\left(y-1\right)-\dfrac{2}{5}y\left(y-1\right)\)
=\(\dfrac{2}{5}\left(y-1\right)\left(x-y\right)\)
e,\(10x\left(x-y\right)-8y\left(y-x\right)=10x\left(x-y\right)+8y\left(x-y\right)\)
\(2\left(x-y\right)\left(5x+4y\right)\)
g ) \(4x^2\left(x-2y\right)-\left(4x+1\right)\left(2y-x\right)\)
\(=4x^2\left(x-2y\right)+\left(4x+1\right)\left(x-2y\right)\)
\(=\left(4x^2+4x+1\right)\left(x-2y\right)\)
\(=\left(2x+1\right)^2\left(x-2y\right)\)
h ) \(x^2-ax^2-y+ay+cx^2-cy\)
\(=x^2\left(1-a+c\right)-y\left(1-a+c\right)\)
\(=\left(x^2-y\right)\left(1-a+c\right)\)
a.
\(5x^2\left(x-2y\right)-15x\left(x-2y\right)\)
\(=\left(x-2y\right)\left(5x^2-15x\right)\)
\(=5x\left(x-2y\right)\left(x-3\right)\)
b.
\(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
a)\(x^2-y^2-2y-1=x^2-\left(y^2+2y+1\right)=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)
b)\(x^2.\left(1-x^2\right)-4+4x^2=x^2.\left(1-x^2\right)-4.\left(1-x^2\right)=\left(1-x^2\right).\left(x^2-2^2\right)\)\(=\left(1-x\right).\left(1+x\right).\left(x-2\right).\left(x+2\right)\)
Tham khảo nhé~
25n(n-1)-50(n-1) luôn chia hết cho 150 với mọi n là số nguyên
giúp mình chứng minh nha . Cám ơn mấy bạn
Mình nghĩ bạn ghi đề sai, đề đúng theo mình là:
\(x^2y^2\left(x-y\right)+y^2z^2\left(y-z\right)+z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(x-y\right)-y^2z^2\text{[}\left(x-y\right)+\left(z-x\right)\text{]}+z^2x^2\left(z-x\right)\)
\(=x^2y^2\left(x-y\right)-y^2z^2\left(x-y\right)-y^2z^2\left(z-x\right)+z^2x^2\left(z-x\right)\)
\(=\left(x-y\right)\left(x^2y^2-y^2z^2\right)+\left(z-x\right)\left(z^2x^2-y^2z^2\right)\)
\(=\left(x-y\right).y^2\left(x+z\right)\left(x-z\right)+\left(z-x\right).z^2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y\right)\left(x-z\text{ }\right)\text{[}y^2.\left(x+z\right)-z^2\left(x+y\right)\text{]}\)
\(=\left(x-y\right)\left(z-x\right)\left(y^2x+y^2z-z^2x-z^2y\right)\)
\(=\left(x-y\right)\left(z-x\right)\text{[}\left(y^2x-z^2x\right)+\left(y^2z-z^2y\right)\text{]}\)
\(=\left(x-y\right)\left(z-x\right)\text{[}x.\left(y-z\right)\left(y+z\right)+yz\left(y-z\right)\text{]}\)
\(=\left(x-y\right)\left(x-z\right)\left(y-z\right)\left(xy+x\text{z}+yz\right)\)