Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x3+x2+4
=x3-x2+2x+2x2-2x+4
=x(x2-x+2)+2(x2-x+2)
=(x+2)(x2-x+2)
b)x3-2x-4
=x3+2x2+2x-2x2-4x-4
=x(x2+2x+2)-2(x2+2x+2)
=(x-2)(x2+2x+2)
Ta có : x7 + x2 + 1
= x7 - x + x + x2 + 1
= (x7 - x) + (x2 + x + 1)
= x(x6 - 1) + (x2 + x + 1)
= x(x3 - 1)(x3 + 1) + (x2 + x + 1)
= x(x - 1)(x2 + x + 1).(x3 + 1) + (x2 + x + 1)
= (x2 + x + 1)[x(x - 1).(x3 + 1) + 1]
= (x2 + x + 1) (x5 - x4 + x2 - x + 1)
\(x^2+7x+12\)
cách 1: \(=x^2+4x+3x+12\)
\(=x\left(x+4\right)+3\left(x+4\right)\)
\(=\left(x+4\right)\left(x+3\right)\)
cách 2: \(=x^2+3x+4x+12\)
\(=x\left(x+3\right)+4\left(x+3\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
cách 3: \(=\left(x^2+7x+12,25\right)-0.25\)
\(=\left(x+3.5\right)^2-0.5^2\)
\(=\left(x+3.5+0.5\right)\left(x+3.5-0.5\right)\)
\(=\left(x+4\right)\left(x+3\right)\)
lấy đâu ra 8 cách vậy trời!!!!!!!!!!!!!!!
Cách 1:
\(x^2+7x+12\)
\(=\left(x^2+4x\right)+\left(3x+12\right)\)
\(=x\left(x+4\right)+3\left(x+4\right)\)
\(=\left(x+3\right)\left(x+4\right)\)
\(x^8+x^7+1=x^8+x^7+x^6-x^6-x^5-x^4+x^5+x^4+x^3-x^3-x^2-x+x^2+x+1\)
\(=x^6\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)
\(x^4+x^2+x\)
\(=x^2+x+x^4\)
\(=x^2+2x.\frac{1}{2}+\frac{1}{2}^2-\frac{1}{2}^2+x^4\)
\(=\left(x^2+2x.\frac{1}{2}+\frac{1}{2}^2\right)-\frac{1}{2}^2+x^4\)
\(=\left(x+\frac{1}{2}\right)^2-\frac{1}{2}^2+x^4\)
\(=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}+x^4\)
\(=\left(x+\frac{1}{2}\right)^2-\sqrt{\frac{1}{4}}^2+x^4\)
\(=\left(x+\frac{1}{2}-\sqrt{\frac{1}{4}}\right).\left(x+\frac{1}{2}+\sqrt{\frac{1}{4}}\right)+x^4\)
Đến đây dễ rồi .Biến đổi ngoặc bên phải giống ngoặc trái rồi mở ngoặc đặt nhân tử chung là được .
\(x^7+x^2+1\)
\(=x^7+x^6+x^5+x^4+x^3+x^2+x+1\)
\(=x^5\left(x^2+x+1\right)-x^4\left(x^2+x+1\right)+x^2\left(x^2+x+1\right)-x\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
a) \(x^7+x^2+1=\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x\left(x^6-1\right)+\left(x^2+x+1\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x\left(x-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)
b) \(x^7+x^5+1=\left(x^7+x^6+x^5\right)-\left(x^6-1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x^3-1\right)\left(x^3+1\right)\)
\(=x^5\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)\)
\(=\left(x^2+x+1\right)\left[x^5-\left(x-1\right)\left(x^3+1\right)\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
\(x^8+x^7+1\)
\(=x^8+x^7-x^2-x+x^2+x+1\)
\(=x^7.\left(x+1\right)-x\left(x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x+1\right)\left(x^7-x\right)+\left(x^2+x+1\right)\)
\(=x.\left(x+1\right)\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x.\left(x+1\right)\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=x.\left(x+1\right)\left(x-1\right)\left(x^2+x+1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x.\left(x+1\right)\left(x-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[x.\left(x^2-1\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[\left(x^3-x\right)\left(x^3+1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left(x^6-x^4+x^3-x+1\right)\)