Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+2xy+4x+y+1\)
\(=\left(4x^2+2x\right)+\left(2xy+y\right)+\left(2x+1\right)\)
\(=2x\left(2x+1\right)+y\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x+y+1\right)\left(2x+1\right)\)
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
C1: \(4x^2-4x+1=\left(2x-1\right)^2\) (Hằng đẳng thức bạn ạ)
C2: \(4x^2-4x+1\)
=\(4x^2-2x-2x+1\)
=\(2x\left(2x-1\right)-\left(2x-1\right)\)
=\(\left(2x-1\right)\left(2x-1\right)\)
=\(\left(2x-1\right)^2\)
Mình chắc 100% đó . **** mình bạn na !!!
\(x^3+4x^2+4x+1\)
\(=x^3+3x^2+x+x^2+3x+1\)
\(=x\left(x^2+3x+1\right)+\left(x^2+3x+1\right)\)
\(=\left(x+1\right)\left(x^2+3x+1\right)\)
\(4x^2-y^2+8x-16\)
\(=\left(2x\right)^2-\left(y-4\right)^2=\left(2x-y+4\right)\left(2x+y-4\right)\)
4x2 - y2 + 8y - 16
= 4x2 - (y2 - 8y + 16)
= (2x)2 - (y - 4)2
= [2x - (y - 4)][2x + (y - 4)]
= (2x - y +4)(2x + y - 4)
Phân tích thành nhân tử:
x^2 - y^2 - 4x + 4
=(x^2-4x+4)-y^2
=(x-2)^2-y^2
=(x-2+y)(x-2-y)
4x2-y2+4x+1
=(4x2+4x+1)-y2
=(2x+1)2-y2
=(2x+1-y)(2x+1+y)
bài này tớ cũng ko chắc:
\(4x^2-y^2+4x+1=\left(4x+4x^2+1\right)-y^2= \left(2x+1\right)^2-y^2\)
\(=\left(2x+1\right)\left(2x+1\right)-y^2=\left(2x+1-y\right)\left(2x+1+y\right)\)