K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x2-4x+3

x2-x-3x-3

=(x2-x)-(3x-3)

=x(x-1) - 3(x-1)

=(x-3)(x-1)

18 tháng 8 2018

C1:       \(x^2-4x+3\)

\(=x^2-4x+4-1\)

\(=\left(x-2\right)^2-1\)

\(=\left(x-2-1\right).\left(x-2+1\right)\)

\(=\left(x-3\right).\left(x-1\right)\)

C2 :    \(x^2-4x+3\)

\(=x^2-x-3x+3\)

\(=x.\left(x-1\right)-3.\left(x-1\right)\)

\(=\left(x-1\right).\left(x-3\right)\)

14 tháng 7 2016

nhìu quá @@

7 tháng 8 2017

\(a,x^2-5x+4=x^2-4x-x+4=x\left(x-4\right)-\left(x-4\right)=\left(x-4\right)\left(x-1\right)\)

\(b,4x^2-4x-3=4x^2-2.2x.1+1-3-1=\left(2x-1\right)^2-4=\left(2x-1-2\right)\left(2x-1+2\right)=\left(2x-3\right)\left(2x+1\right)\)

26 tháng 7 2015

a/(x-2)(x2+2x+2)

b/(x+2)(x2-x+2)

c/(x2-1)(x2+5)

19 tháng 9 2018

\(x^4+4x^2-5\)

\(=\left(x^4+4x^2+4\right)-9\)

\(=\left(x^2+2\right)^2-9\)

\(=\left(x^2+2+3\right)\left(x^2+2-3\right)\)

\(=\left(x^2+5\right)\left(x^2-1\right)\)

21 tháng 7 2019

1.a)\(x^2-ax+bx-ab=x\left(x-a\right)+b\left(x-a\right)=\left(x+b\right)\left(x-a\right)\)

b)\(x^2+ay-y^2-ax=\left(x-y\right)\left(x+y\right)-a\left(x-y\right)=\left(x+y-a\right)\left(x-y\right)\)

c)\(x^3-3x^2-4x+12=x^2\left(x-3\right)-4\left(x-3\right)=\left(x^2-4\right)\left(x-3\right)=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)

2.a)\(2x^2-12x=-18=>2x^2-12x+18=0=>x^2-6x+9=0=>\left(x-3\right)^2=0=>x-3=0=>x=3\)b)\(\left(4x^2-4x+1\right)-x^2=0=>3x^2-3x-x+1=3x\left(x-1\right)-\left(x-1\right)=\left(3x-1\right)\left(x-1\right)=0\)

\(=>\orbr{\begin{cases}3x-1=0\\x-1=0\end{cases}=>\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}}\)

21 tháng 7 2019

a) 2x2 - 12x = -18

<=> 2x2 - 12x + 18 = 0

<=> 2(x2 - 6x + 9) = 0

<=> 2(x2 - 2.x.3 + 9) = 0

<=> 2(x - 3)2 = 0

<=> x - 3 = 0

<=> x = 0 + 3

<=> x = 3

b) (4x2 - 4x + 1) - x2 = 0

<=> 4x2 - 4x + 1 - x= 0 

<=> 3x2 - 4x + 1 = 0

<=> 3x2 - x - 3x + 1 = 0

<=> x(3x - 1) - (3x - 1) = 0

<=> \(\orbr{\begin{cases}\left(3x-1\right)=0\\\left(x-1\right)=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{1}{3}\\x=1\end{cases}}\)

4 tháng 9 2016

a) x2 – 3x + 2 = a) x2 – x - 2x + 2 = x(x - 1) - 2(x - 1) = (x - 1)(x - 2)

Hoặc x2 – 3x + 2 = x2 – 3x - 4 + 6

                         = x2 - 4 - 3x + 6

                          = (x - 2)(x + 2) - 3(x -2)

                           = (x - 2)(x + 2 - 3) = (x - 2)(x - 1)

b) x2 + x – 6 = x2 + 3x - 2x – 6

                       = x(x + 3) - 2(x + 3)

                        = (x + 3)(x - 2).

 

19 tháng 10 2020

a) x2 - 3x + 2 = x2 - x - 2x + 2 = x( x - 1 ) - 2( x - 1 ) = ( x - 1 )( x - 2 )

b) 2x2 - x - 6 = 2x2 - 4x + 3x - 6 = 2x( x - 2 ) + 3( x - 2 ) = ( x - 2 )( 2x + 3 )

c) x2 - 5x - 6 = x2 + x - 6x - 6 = x( x + 1 ) - 6( x + 1 ) = ( x + 1 )( x - 6 )

d) x2 + 8x + 7 = x2 + x + 7x + 7 = x( x + 1 ) + 7( x + 1 ) = ( x + 1 )( x + 7 )

e) 3x2 + 2x - 5 = 3x2 - 3x + 5x - 5 = 3x( x - 1 ) + 5( x - 1 ) = ( x - 1 )( 3x + 5 )

f) 4x2 - 3x - 1 = 4x2 - 4x + x - 1 = 4x( x - 1 ) + ( x - 1 ) = ( x - 1 )( 4x + 1 )

19 tháng 10 2020

\(x^2-3x+2=x^2-x-2x+2=\left(x-1\right)\left(x-2\right)\)

b, \(2x^2-x-6=2x^2-4x+3x-6=\left(x-2\right)\left(2x+3\right)\)

c, \(x^2-5x-6=x^2+x-6x-6=\left(x+1\right)\left(x-6\right)\)

d, \(x^2+8x+7=x^2+x+7x+7=\left(x+1\right)\left(x+7\right)\)

e, \(3x^2+2x-5=3x^2-3x+5x-5=\left(x-1\right)\left(3x+5\right)\)

f, \(4x^2-3x-1=4x^2-4x+x-1=\left(x-1\right)\left(4x+1\right)\)

19 tháng 10 2020

a) x2 - 4x + 2 = (x2 - 4x + 4) - 2 = (x - 2)2 - 2 = \(\left(x-2+\sqrt{2}\right)\left(x-2-\sqrt{2}\right)\)

b)  x2 - 12x + 11 = x2 - x - 11x + 11 = x(x - 1) - 11(x - 1) = (x - 1)(x - 11)

c) 3x2 + 6x - 9 = 3x2 - 3x + 9x - 9 = 3x(x - 1) + 9(x - 1) = (3x + 9)(x - 1) = 3(x + 3)(x - 1)

d) 2x2 - 6x + 2 = 2(x2 - 3x + 1) = 2(x2 - 3x + 9/4 - 5/4) = 2[(x - 3/2)2 - 5/4] = \(2\left(x-\frac{3}{2}+\sqrt{\frac{5}{4}}\right)\left(x-\frac{3}{2}-\sqrt{\frac{5}{4}}\right)\) 

19 tháng 10 2020

1. 

a) \(x^2-4x+2=\left(x^2-4x+4\right)-2=\left(x-2\right)^2-2=\left(x-2-\sqrt{2}\right)\left(x-2+\sqrt{2}\right)\)

b) \(x^2-12x+11=\left(x^2-12x+36\right)-25=\left(x-6\right)^2-5^2=\left(x-6-5\right)\left(x-6+5\right)=\left(x-11\right)\left(x-1\right)\)

c) \(3x^2+6x-9=3\left(x^2+2x-3\right)=3\left[\left(x^2+2x+1\right)-4\right]=3\left[\left(x+1\right)^2-2^2\right]=3\left(x-1\right)\left(x+3\right)\)

d) \(2x^2-6x+2=2\left(x^2-3x+1\right)=2\left(x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\right)=2\left[\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\right]\)

\(=2\left(x-\frac{3}{2}-\frac{\sqrt{5}}{2}\right)\left(x-\frac{3}{2}+\frac{\sqrt{5}}{2}\right)\)