Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bằng phương pháp nào zậy bn????
547675675675678768768789980957457346242645657
81-(x2+6x)2
=92-(x2+6x)2
=(9+x2+6x)(9-x2-6x)
=(x+3)2(9-x2-6x)
27-64a3
=33-(4a)3
=(3-4a)[32+3*4a+(4a)2]
=(3-4a)( 9+12a+16a2)
a) Ta có: \(-9x^2+12xy-4y^2\)
\(=-\left(9x^2-12xy+4y^2\right)\)
\(=-\left[\left(3x\right)^2-2\cdot3x\cdot2y+\left(2y\right)^2\right]\)
\(=-\left(3x-2y\right)^2\)
b) Ta có: \(-125a^3+75a^2-15a+1\)
\(=\left(-5a\right)^3+3\cdot\left(-5a\right)^2\cdot1+3\cdot\left(-5a\right)\cdot1^2+1^3\)
\(=\left(-5a+1\right)^3\)
\(=\left(1-5a\right)^3\)
c) Ta có: \(64-96a+48a^2-8a^3\)
\(=4^3-3\cdot4^2\cdot2a+3\cdot4\cdot\left(2a\right)^2-\left(2a\right)^3\)
\(=\left(4-2a\right)^3\)
\(=\left[2\cdot\left(2-a\right)\right]^3\)
\(=8\left(2-a\right)^3\)
d) Ta có: \(-\frac{1}{8}m^3n^6-\frac{1}{27}\)
\(=-\left(\frac{1}{8}m^3n^6+\frac{1}{27}\right)\)
\(=-\left[\left(\frac{1}{2}mn^2\right)^3+\left(\frac{1}{3}\right)^3\right]\)
\(=-\left(\frac{1}{2}mn^2+\frac{1}{3}\right)\left(\frac{1}{4}m^2n^4-\frac{1}{6}mn^2+\frac{1}{9}\right)\)
Ta có: (2x-1)^3 + (5-6x)^3 -4^3 (1-x)^3
= (2x-1)^3 + (5-6x)^3 -(4-4x)^3 (*)
Đặt 2x-1 = a và 5 -6x = b thì 4-4x = a+b nên thay vào (*),ta được :
a^3+ b^3 -(a+b)^3
= a^3 +b^3 -a^3-b^3 -3ab(a+b)
= -3ab(a+b)
= -3 (2x-1)(5-6x)(4-4x)
Chúc bạn học tốt.
a) \(x^2+2x-4y^2-4y=\left(x^2-4y^2\right)+\left(2x-4y\right)=\left(x+2y\right)\left(x-2y\right)+2\left(x-2y\right)\)
\(=\left(x-2y\right).\left(x+2y+2\right)\)
b) \(x^4-6x^3+54x-81=\left(x^4-81\right)-\left(6x^3-54x\right)=\left(x^2-9\right)\left(x^2+9\right)-6x.\left(x^2-9\right)\)
\(=\left(x^2-9\right).\left(x^2+9-6x\right)=\left(x+3\right).\left(x-3\right).\left(x-3\right)^2=\left(x+3\right).\left(x-3\right)^3\)
c) \(ax^2+ax-bx^2-bx-a+b=\left(ax^2-bx^2\right)+\left(ax-bx\right)-\left(a-b\right)\)
\(=x^2.\left(a-b\right)+x.\left(a-b\right)-\left(a-b\right)=\left(a-b\right).\left(x^2+x-1\right)\)
d) \(\left(x^2+y^2-2\right)^2-\left(2xy-2\right)^2=\left(x^2+y^2-2+2xy-2\right).\left(x^2+y^2-2-2xy+2\right)\)
\(=\left(x^2+2xy+y^2-4\right).\left(x^2+y^2-2xy\right)=\left[\left(x+y\right)^2-4\right].\left(x-y\right)^2\)
\(=\left(x+y+2\right).\left(x+y-2\right).\left(x-y\right)^2\)