K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2023

a) Ta thấy đa thức \(f\left(x\right)=4x^2+81\) vô nghiệm (*).

 Giả sử \(f\left(x\right)\) có thể phân tích được thành nhân tử, khi đó \(f\left(x\right)=\left(ax+b\right)\left(cx+d\right)\), suy ra \(f\) có nghiệm là \(x=-\dfrac{b}{a}\) hoặc \(x=-\dfrac{d}{c}\), mâu thuẫn với (*).

 Vậy ta không thể phân tích \(f\left(x\right)\) thành nhân tử.

b) \(g\left(x\right)=x^7+x^2+1\)

\(g\left(x\right)=x^7-x+x^2+x+1\)

\(g\left(x\right)=x\left(x^6-1\right)+\left(x^2+x+1\right)\)

\(g\left(x\right)=x\left(x^3-1\right)\left(x^3+1\right)+\left(x^2+x+1\right)\)

\(g\left(x\right)=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(g\left(x\right)=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+1\right)\)

 Xét \(h\left(x\right)=x^5-x^4+x^2-x+1\), nếu \(h\left(x\right)\) phân tích được thành nhân tử thì nó có nghiệm hữu tỉ. Khi đó nó có dạng \(x=\dfrac{p}{q},\left(p,q\inℤ;\left(p,q\right)=1\right),p|1,q|1\) \(\Rightarrow x=\pm1\). Ta thấy \(h\left(1\right).h\left(-1\right)\ne0\) nên 2 nghiệm này không thỏa mãn. Vậy h(x) không có nghiệm hữu tỉ \(\Rightarrow\) g(x) không thể phân tích tiếp.

19 tháng 10 2023

a)

\(4x^2+81\\=(2x)^2+2\cdot2x\cdot9+9^2-36x\\=(2x+9)^2-36x\)

Bạn xem lại đề bài nhé!

b)

\(x^7+x^2+1\\=(x^7+x^6+x^5)-x^6-x^5-x^4+(x^4+x^3+x^2)-(x^3-1)\\=x^5(x^2+x+1)-x^4(x^2+x+1)+x^2(x^2+x+1)-(x-1)(x^2+x+1)\\=(x^2+x+1)(x^4-x^4+x^2-x+1)\)

26 tháng 7 2018

\(x^4+x^2+1\)

\(=\left[\left(x^2\right)^2+2x^2.1+1^2\right]-x^2\)

\(=\left(x^2+1\right)^2-x^2\)

\(=\left(x^2+x+1\right)\left(x^2-x+1\right)\)

\(\left(x^2-8\right)^2+36\)

\(=x^4-16x^2+64+36\)

\(=\left[\left(x^2\right)^2-2.10x^2+10^2\right]-\left(2x\right)^2\)

\(=\left(x^2-10\right)^2-\left(2x\right)^2\)

\(=\left(x^2-10-2x\right)\left(x^2-10+2x\right)\)

\(4x^4+81\)

\(=\left[\left(2x^2\right)^2+2.2x^2.9+9^2\right]-\left(6x\right)^2\)

\(=\left(2x^2+9\right)-\left(6x\right)^2\)

\(=\left(2x^2+9-6x\right).\left(2x^2+9+6x\right)\)

Tham khảo nhé~

10 tháng 9 2019

Noob quá cặc

2 tháng 8 2018

Bài làm ai trên 11 điểm tích mình thì mình tích lại

                     Ông tùng hơn tùng số tuổi là :

                            29 + 32 = 61 (tuổi )

            Vậy ông của tùng hơn tùng 61 tuổi 

2 tháng 8 2018

We .........(have) an English lesson on Monday

22 tháng 5 2018

a) \(4x^3\left(x^2+x\right)-\left(x^2+x\right)=\left(x^2+x\right)\left(4x^3-1\right)\)

b)\(\left(1-2a+a^2\right)-\left(b^2-2bc+c^2\right)=\left(1-a\right)^2-\left(b-c\right)^2=\)\(\left(1-a+b-c\right)\left(1-a-b+c\right)\)

22 tháng 5 2018

lm tiếp câu c

c)  \(C=\left(x-7\right)\left(x-5\right)\left(x-4\right)\left(x-2\right)-72\)

\(=\left[\left(x-7\right)\left(x-2\right)\right]\left[\left(x-5\right)\left(x-4\right)\right]-72\)

\(=\left(x^2-9x+14\right)\left(x^2-9x+20\right)-72\)

Đặt   \(x^2-9x+17=a\) ta có:

        \(C=\left(a-3\right)\left(a+3\right)-72\)

            \(=a^2-9-72\)

           \(=a^2-81=\left(a-9\right)\left(a+9\right)\)
Thay trở lại ta được:  \(C=\left(x^2-9x++8\right)\left(x^2-9x+26\right)\)

          

12 tháng 8 2018

giúp mk vs !!!

31 tháng 7 2018

a)\(x^2-y^2-2y-1=x^2-\left(y^2+2y+1\right)=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)

b)\(x^2.\left(1-x^2\right)-4+4x^2=x^2.\left(1-x^2\right)-4.\left(1-x^2\right)=\left(1-x^2\right).\left(x^2-2^2\right)\)\(=\left(1-x\right).\left(1+x\right).\left(x-2\right).\left(x+2\right)\) 

Tham khảo nhé~

      

31 tháng 7 2017

ấn máy tính để tìm nghiệm rồi phân tích ra

31 tháng 7 2017

\(x^3-4x^2+4x-1\)

\(=x^3-x^2-3x^2+3x+x-1\)

\(=x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-3x+1\right)\)

a,x2-4xy+4y2

=(x-2y2

b,4x4+9y2-12x2y

=(2x2)2+(3y)2-12x2y

(2x2-3y)

21 tháng 7 2018

a) x2 - 4xy + 4y2

= x- 2.x.2y + (2y)2

=( x- y)2

b) 4x4 + 9y2 -12x2y

= (2x2)+12x2y + (3y)2

= [(2x2)  - 3y]

10 tháng 10 2018

      \(a^3-a^2x-ay+xy\)

\(=a^2\left(a-x\right)-y\left(a-x\right)\)

\(=\left(a-x\right)\left(a^2-y\right)\)

       \(4x^2-y^2+4x+1\)

\(=\left(4x^2+4x+1\right)-y^2\)

\(=\left(2x+1\right)^2-y^2=\left(2x-y+1\right)\left(2x+y+1\right)\)

       \(x^3-x+y^3-y\)

\(=\left(x^3+y^3\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2-1\right)\)

10 tháng 10 2018

a)a3 - a2x - ay +xy

=(a3 - a2x) - (ay - xy)

=a2(a-x) - y(a-x)

=(a-x).(a2 - y)

8 tháng 8 2018

\(x^2+4x-y^2+4\)

\(=\left(x^2+2.x.2+2^2\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right).\left(x+2+y\right)\)

Tham khảo nhé~

8 tháng 8 2018

\(x^2+4x-y^2+4\)

\(=x^2+4x+4-y^2\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x^2+2x.2+2^2\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left[\left(x+2\right)+y^2\right].\left[\left(x+2\right)-y^2\right]\)

\(=\left(x+2+y^2\right)\left(x+3-y^2\right)\)