Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(81x^2-6yz-9y^2-z^2\)
\(=81x^2-\left(z-3y\right)^2\)
\(=\left(9x-z+3y\right)\left(9x+z-3y\right)\)
b)\(x^2y-x^3-9y+9x\)
\(=x^2\left(y-x\right)-9\left(y-x\right)\)
\(=\left(y-x\right)\left(x-3\right)\left(x+3\right)\)
c)\(3a^2-6ab+3b^2-12c^2\)
\(=3\left(a^2-2ab+b^2-4z^2\right)\)
\(=3\left[\left(a-b\right)^2-4z^2\right]\)
\(=3\left(a-b-2z\right)\left(a-b+2z\right)\)
a)\(81x^2-6yz-9y^2-z^2=\left(9x\right)^2-\left(9y^2+6yz+z^2\right)=\left(9x\right)^2-\left(3y+z\right)^2=\left(9x-3y-z\right)\left(9x+3y+z\right)\)b)\(x^2y-x^3-9y+9x=x^2\left(y-x\right)-9\left(y-x\right)=\left(x^2-9\right)\left(y-x\right)=\left(x-3\right)\left(x+3\right)\left(y-x\right)\)
c)\(3a^2-6ab+3b^2-12c^2=3\left(a^2-2ab+b^2-4c^2\right)=3\left[\left(a-b\right)^2-\left(2c\right)^2\right]=3\left(a-b-2c\right)\left(a-b+2c\right)\)
a) = x2 (y - x) - 9( y - x) = ( y - x ) ( x2 - 9) = ( y -x) ( x - 3 ) ( x + 3)
b) = x2 ( x - 1 ) - 16 ( x - 1 ) = ( x - 1 ) ( x2 - 16 ) = ( x - 1 ) ( x - 4 ) ( x + 4 )
c) = (9x)2 - ( 9y2 + 6yz + z2 ) = (9x)2 - ( 3y + z)2 = (9x - 3y - z ) ( 9x + 3y + z)
d) = z( x - y) - ( x2 -2xy + y2 ) = z(x - y) - (x - y)2 = (x - y) (z - 1)
e) = (x + 3) (x + 5)
f) = (x - 4) ( x + 3)
g) = (9x)2 + 2.9x.2 + 22 - 36x = (9x + 2)2 - (\(6\sqrt{x}\))2 = \(\left(9x+2+6\sqrt{x}\right)\). \(\left(9x+2-6\sqrt{x}\right)\)
a) x2y - x3 - 9y + 9x = x2(y - x) - 9(y - x) = (y - x)(x2 - 9) = (y - x)(x + 3)(x - 3).
b) x2(x - 1) + 16(1 - x) = (x - 1)(x2 - 16) = (x - 1)(x - 4)(x + 4).
c) 81x2 - 6yz - 9y2 - z2 = (9x)2 - ((3y)2 + 2.3yz + z2) = (9x)2 - (3y + z)2 = (9x + 3y +z)(9x - 3y - z).
d) xz - yz - x2 + 2xy - y2 = z(x - y) - (x - y)2 = (x - y)(z - x + y).
e) x2 + 8x + 15 = (x2 + 3x) + (5x + 15) = x(x + 3) + 5(x + 3) = (x + 3)(x + 5).
f) x2 - x - 12 = (x2 - 4x) + (3x - 12) = x(x - 4) + 3(x - 4) = (x - 4)(x + 3).
g) (Đề sai) 81x4 + 4 = (81x4 + 36x2 + 4) - 36x2 = (9x2 + 2)2 - 36x2 = (9x2 + 2 + 6x)(9x2 + 2 - 6x).
a)
\(4x^2-9y^2+6x-9y=\left(2x-3y\right)\left(2x+3\right)+3\left(2x-3y\right)\)
\(=\left(2x-3y\right)\left(2x+3y+3\right)\)
b)
\(1-2x+2yz+x^2-y^2-z^2=\left(x^2-2x+1\right)-\left(y^2-2yz+z^2\right)\) (đổi dấu)
\(=\left(x-1\right)^2-\left(y-z\right)^2\)
c)
\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5\left(x+1\right)+3\right)\)
\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)
\(=\left(x-1\right)\left(x^2+6x+9\right)=\left(x-1\right)\left(x+3\right)^2\)
a. 6x3y2 ( 2-x) + 9x2y2 (x-2)
= -6x3y2 (x-2) + 9x2y2 ( x-2)
= (x-2) 3x2y2 ( -2x + 3)
b. x2 - 4x + 4y - y2
= x2 - y2 - (4x - 4y )
= (x-y)(x+y) - 4( x-y)
= (x-y)(x+y-4)
c. 81x2 + 6yz -9y2-z2
= 81x2 - (9y2 - 6yz + z2 )
= (9x)2 - ( 3y - z )2
= (9x + 3y -z)(9x - 3y + z )
\(a,=6x^3y^2\left(2-x\right)-9x^2y^2\left(2-x\right)\)
\(=\left(2-x\right)\left(6x^3y^2-9x^2y^2\right)=\left(2-x\right)3x^2y^2\left(2x-3\right)\)
\(f,=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5\left(2x-1\right)\)
\(g,=\left(x-3\right)\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x-3+2\right)\)
\(=\left(x+3\right)\left(x-1\right)\)
Bài 1 :
a) xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
b) \(x^3-x+3x^2y+3xy^2+y^3-x-y\)
\(=\left(x^3+3x^2y+3xy^2+y^3\right)-\left(x+y\right)\)
\(=\left(x+y\right)^3-\left(x+y\right)\)
\(=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\)
\(=\left(x+y\right)\left(x+y-1\right)\left(x+y+1\right)\)
Đã có kết quả
Bài 1,chữa phần a
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
=[xy(x+y)+xyz]+[yz(y+z)+xyz]+xz(x+z)
=xy(x+y+z)+yz(x+y+z)+xz(x+z)
=y(x+y+z)(x+z)+xz(x+z)
=(x+z)(xy+y2+yz+xz)
=(x+z)(x+y)(y+z)
Chữa phần b
x3-x+3x2y+3xy2+y3-y
=(x+y)(x+y-1)(x+y+1)
Bài2
a3+b3+c3=(a+b)3-3ab(a+b)+c3=-c3-3ab(-c)+c3=3abc
Ai làm đúng như này ớ sẽ k
\(81x^2-6yz-9y^2-z^2=81x^2-\left(6yz+9y^2+z^2\right)\)
\(=81x^2-\left(9y^2+6xy+z^2\right)=81x^2-\left(3y+z\right)^2\)
\(=\left(9x-3y-z\right)\left(9x+3y+z\right)\)
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
a)x^3-x+3x^2y+3xy^2+y^3-y
=(x^3+3x^2y+3xy^2+y^3)-(x+y)
=(x+y)^3-(x+y)
=(x+y)[(x+y)^2-1]
=(x+y)(x+y-1)(x+y+1)
b)81x^2-6yz-9y^2-z^2
=81x^2-(9y^2-6yz+z^2)
=81x^2-(3y-z)^2
=(9x)^2-(3y-z)^2
=(9x-3y+z)(9x+3y-z)
c)12x^2-72x+60
=12(x^2-6x+5)
=12(x^2-x-5x+5)
=12[x(x-1)-5(x-1)]
=12(x-1)(x-5)