Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3( x - y ) - 5x( y - x )
= 3( x - y ) - 5x[ -( x - y ) ]
= 3( x - y ) + 5x( x - y )
= ( 3 + 5x )( x - y )
b) x3 + 2x2y + xy2 - 9x
= x( x2 + 2xy + y2 - 9 )
= x[ ( x + y )2 - 32 ]
= x( x + y - 3 )( x + y + 3 )
c) 14x2y - 21xy2 + 28x2y2
= 7xy( 2x - 3y + 4xy )
Bài giải
\(a,\text{ }3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(3+5x\right)\)
\(b,\text{ }x^3+2x^2y+xy^2-9x\)
\(=x\left(x^2+2xy+y^2-9\right)\)
\(=x\left[\left(x+y\right)^2-3^2\right]\)
\(=x\left(x+y+3\right)\left(x+y-3\right)\)
\(c,\text{ }14x^2y-21xy^2+28x^2y\)
\(=7xy\left(2x-3y+4x\right)\)
\(=7xy\left(6x-3y\right)\)
\(C1:=3+1-3y\)
\(=4-3y\)
\(C2:\)
\(a.=3x\left(2y-1\right)\)
\(b.=\left(x-y\right)\left(x+y\right)+4\left(x+y\right)\)
\(=\left(x-y+4\right)\left(x+y\right)\)
\(C3:\)
\(a.6x^2+2x+12x-6x^2=7\)
\(14x=7\)
\(x=\frac{1}{2}\)
\(b.\frac{1}{5}x-2x^2+2x^2+5x=-\frac{13}{2}\)
\(\frac{26}{5}x=-\frac{13}{2}\)
\(x=-\frac{13}{2}\times\frac{5}{26}\)
\(x=-\frac{5}{4}\)
Bạn Moon làm kiểu gì vậy ?
1) \(\left(3x^2y^2+x^2y^2\right):\left(x^2y^2\right)-3y\)
\(=\left[\left(x^2y^2\right)\left(3+1\right)\right]:\left(x^2y^2\right)-3y\)
\(=4-3y\)
2) a, \(6xy-3x=\left(3x\right)\left(2y-1\right)\)
b, \(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y+4\right)\)
3) a, \(2x\left(3x+1\right)+\left(4-2x\right)3x=7\)
\(< =>6x^2+2x+12x-6x^2=7\)
\(< =>14x=7< =>x=\frac{7}{14}\)
b, \(\frac{1}{2}x\left(\frac{2}{5}-4x\right)+\left(2x+5\right)x=-6\frac{1}{2}\)
\(< =>\frac{x}{2}.\frac{2}{5}-\frac{x}{2}.4x+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{x}{5}-2x^2+2x^2+5x=-\frac{13}{2}\)
\(< =>\frac{26x}{5}=\frac{-13}{2}\)
\(< =>26x.2=\left(-13\right).5\)
\(< =>52x=-65< =>x=-\frac{65}{52}=-\frac{5}{4}\)
1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)
=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)
=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)
=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)
Ta thấy: \((5x-2)^2\ge0\)
=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)
2. \(f\left(x\right)=4x^2-28x+50\)
=> \(f\left(x\right)=(4x^2-28x+49)+1\)
=> \(f\left(x\right)=(2x-7)^2+1\)
Ta thấy: \((2x-7)^2\ge0\)
=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)
3. \(f\left(x\right)=-16x^2+72x-82\)
=> \(f\left(x\right)=-(16x^2-72x+82)\)
=> \(f\left(x\right)=-(16x^2-72x+81+1)\)
=> \(f\left(x\right)=-[(4x-9)^2+1]\)
Ta thấy: \((4x-9)^2\ge0\)
=> \((4x-9)^2+1\ge1>0\)
=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)
5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)
=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)
=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)
Ta thấy: \((2x-3)^2\ge0\)
\((3y+1)^2\ge0\)
=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)
Bài làm:
a) \(x^6-6x^4+12x^2-8\)
\(=\left(x^2-2\right)^3\)
b) \(x^2+16-8x=\left(x-4\right)^2\)
c) \(10x-x^2-25=-\left(x-5\right)^2\)
d) \(9\left(a-b\right)^2-4\left(x-y\right)^2\)
\(=\left[3\left(a-b\right)\right]^2-\left[2\left(x-y\right)\right]^2\)
\(=\left(3a-3b-2x+2y\right)\left(3a-3b+2x-2y\right)\)
e) \(\left(x+y\right)^2-2xy+1\)
\(=x^2+2xy+y^2-2xy+1\)
\(=x^2+y^2+1\)
sai sai
a. \(x^6-6x^4+12x^2-8=\left(x^2\right)^3-3\left(x^2\right)^2.2+3x^22-2^3=\left(x^2-2\right)^3\)
b. \(x^2+16-8x=x^2-8x+4^2=\left(x-4\right)^2\)
c. \(10x-x^2-25=10x-x^2-5^2=-\left(x-5\right)^2\)
d. \(9\left(a-b\right)^2-4\left(x-y\right)^2=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)=\left(x-5y\right)\left(5x-y\right)\)
e. \(\left(x+y\right)^2-2xy+1=x^2+2xy+y^2-2xy+1=x\left(x+2y\right)-y\left(y+2x\right)+2y^2+1\)
\(=x\left(x+y\right)-y\left(y+x\right)+xy-yx+2y^2+x=\left(x-y\right)\left(x+y\right)+2y^2+x\)
Bạn tự tách hđt nhé! Gõ mỏi tay :v~
\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)
⇔ \(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
⇔ \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)
Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
⇒ \(x=y=z\)
j lắm thế :)))
Bài 2 : ~ bài 1 ngán quá =)))
a, Có
\(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)
Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)
b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)
Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))
a) Ta có: \(\frac{\left(2x+1\right)^2}{5}-\frac{\left(x-1\right)^2}{3}=\frac{7x^2-14x-5}{15}\)
\(\Leftrightarrow\frac{\left(2x+1\right)^2\cdot3}{15}-\frac{5\left(x-1\right)^2}{15}-\frac{7x^2-14x-5}{15}=0\)
\(\Leftrightarrow3\left(4x^2+4x+1\right)-5\left(x^2-2x+1\right)-7x^2+14x+5=0\)
\(\Leftrightarrow12x^2+12x+3-5x^2+10x-5-7x^2+14x+5=0\)
\(\Leftrightarrow36x+3=0\)
\(\Leftrightarrow36x=-3\)
\(\Leftrightarrow x=\frac{-3}{36}\)
Vậy: \(x=\frac{-3}{36}\)
b) Ta có: \(\frac{201-x}{99}+\frac{203-x}{97}=\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\frac{201-x}{99}+\frac{203-x}{97}-\frac{205-x}{95}-3=0\)
\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)
\(\Leftrightarrow\frac{201-x+99}{99}+\frac{203-x+97}{97}+\frac{205-x+95}{95}=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
Vì \(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\ne0\)
nên 300-x=0
\(\Leftrightarrow x=300\)
Vậy: x=300
c) Ta có: \(x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)(1)
Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow x^2+1\ge1\ne0\forall x\)(2)
Từ (1) và (2) suy ra x+1=0
hay x=-1
Vậy: x=-1
d) Ta có: \(\left(x-1\right)x\left(x+1\right)\left(x+2\right)=24\)
\(\Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)
Đặt \(x^2+x-1=t\)
\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\)
\(\Leftrightarrow t^2-1-24=0\)
\(\Leftrightarrow t^2-25=0\)
\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)
\(\Leftrightarrow\left(x^2+x-1-5\right)\left(x^2+x-1+5\right)=0\)
\(\Leftrightarrow\left(x^2+x-6\right)\left(x^2+x+4\right)=0\)
\(\Leftrightarrow\left(x^2+3x-2x-6\right)\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left[\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\right]\)(3)
Ta có: \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}\ne0\forall x\)(4)
Từ (3) và (4) suy ra
\(\left[{}\begin{matrix}x+3=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;2\right\}\)
e) Ta có: \(\left(5x-3\right)-\left(4x-7\right)=0\)
\(\Leftrightarrow5x-3-4x+7=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy: x=-4
f) Ta có: \(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2+3x-x-1=0\)
\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-1;\frac{1}{3}\right\}\)
g) Ta có: \(x^2+6x-16=0\)
\(\Leftrightarrow x^2-2x+8x-16=0\)
\(\Leftrightarrow x\left(x-2\right)+8\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Vậy: \(x\in\left\{2;-8\right\}\)
h) Ta có: \(x^2+3x-10=0\)
\(\Leftrightarrow x^2+5x-2x-10=0\)
\(\Leftrightarrow x\left(x+5\right)-2\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;2\right\}\)
i) Ta có: \(x^2+x-2=0\)
\(\Leftrightarrow x^2-x+2x-2=0\)
\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy: \(x\in\left\{1;-2\right\}\)
k) Ta có: \(3x^2+7x+2=0\)
\(\Leftrightarrow3x^2+6x+x+2=0\)
\(\Leftrightarrow3x\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{-1}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-2;\frac{-1}{3}\right\}\)
l) Ta có: \(4x^2-12x+5=0\)
\(\Leftrightarrow4x^2-2x-10x+5=0\)
\(\Leftrightarrow2x\left(2x-1\right)-5\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\2x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=1\\2x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{2};\frac{5}{2}\right\}\)
Bài 1:
\(6x^2-2\left(x-y\right)^2-6y^2\)
\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)
\(=2\left(x-y\right)\left(3x+3-x+y\right)\)
\(=2\left(x-y\right)\left(2x+3+y\right)\)
Bài 2:
\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(3x-1-x-1\right)^2\)
\(=\left(2x-2\right)^2\)(1)
b) Thay \(x=\frac{9}{4}\)vào (1) ta được:
\(\left(2.\frac{9}{4}-2\right)^2\)
\(=\frac{25}{4}\)
Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)
Bài 3:
Ta có: \(M=x^2+4x+5\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)
Hay \(M\ge1;\forall x\)
Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x=-2\)
Vậy \(M_{min}=1\Leftrightarrow x=-2\)
Bài 1 : trên là sai nha mình làm lại
\(6x^2-2\left(x-y\right)^2-6y^2\)
\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)
\(=2\left(x-y\right)\left(2x+4y\right)\)
\(=4\left(x-y\right)\left(x+2y\right)\)
a, 3x - 3y = 3( x- y )
b, x2 - x =x(x - 1)
c, 3(x - y) - 5x(y - x)
= 3(x - y) + 5x(x - y)
= ( x - y)(3 + 5x)
d, x(y - 1) - y(y - 1)
= (x - y)(y - 1)
e, 10x(x - y)-8y( y - x)
= 10x(x - y) + 8y(x - y)
= (10y + 8x)(x - y)
f, 2x2 +5x3 +xy
= x(2x + 5x2 + y)
g, 14x2y - 21xy2 +28x2y2
= 7xy(2x - 3y + 4xy)
h, x2 - 3x + 2
= x2 - x - 2x + 2
= x(x - 1)- 2(x - 1)
= (x - 2)(x - 1)
i, x2 - x - 6
x2 + 2x - 3x - 6
x(x + 2) - 3(x + 2)
(x + 2)(x - 3)
k, x2 + 5x+6
= x2 - x + 6x + 6
=x(x - 1) + 6(x + 1)
= x(x - 1) - 6(x - 1)
= (x - 6)(x - 1)
l,x2 - 4x + 3
= x2 - x - 3x + 3
= x(x - 1) - 3(x - 1)
= (x - 3)(x - 1)
m, x2 + 5x +4
= x2 + x + 4x + 4
= x(x + 1) + 4(x + 1)
= (x + 4)(x + 1)
tách nhỏ câu hỏi ra bạn
\(a.10x\left(x-y\right)-6y\left(y-x\right)\\ =10x\left(x-y\right)+6y\left(x-y\right)\\ =\left(10x-6y\right)\left(x-y\right)\\ =2\left(5x-3y\right)\left(x-y\right)\)
\(b.14x^2y-21xy^2+28x^3y^2\\ =7xy\left(x-y+xy\right)\)
\(c.x^2-4+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2\right)+\left(x-2\right)^2\\ =\left(x-2\right)\left(x+2+x-2\right)\\ =2x\left(x-2\right)\)
\(d.\left(x+1\right)^2-25\\ =\left(x+1-5\right)\left(x+1+5\right)=\left(x-4\right)\left(x+6\right)\)