K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2017

K=\(\frac{x^2-3x+2x-6}{x^2-4}\)

=\(\frac{x\left(x-3\right)+2\left(x-3\right)}{x^2-4}\)

=\(\frac{\left(x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}\)

=\(\frac{x-3}{x-2}\)

ta có K=3

\(\Rightarrow3=\frac{x-3}{x-2}\)

\(\Leftrightarrow3x-6=x-3\)

\(\Leftrightarrow2x=3\)

\(\Rightarrow x=\frac{3}{2}\)=1.5

vây x=1,5

21 tháng 2 2017

mơn nhìuvui

7 tháng 7 2017

Ta có : \(3^{x+2}=81\)

\(\Rightarrow3^x.9=81\)

\(\Rightarrow3^x=9\)

\(\Rightarrow3^x=3^2\)

=> x = 2

19 tháng 3 2017

\(\dfrac{x^9-1}{x^9+1}=7=\dfrac{7}{1}\Rightarrow\dfrac{x^9-1}{7}=\dfrac{x^9+1}{1}=\dfrac{-2}{6}=\dfrac{-1}{3}\)

\(\Rightarrow\dfrac{x^9-1}{7}=\dfrac{-1}{3}\Rightarrow x^9=1-\dfrac{7}{3}=\dfrac{-4}{3}\)

\(\Rightarrow x^{18}=\left(x^9\right)^2=\left(\dfrac{-4}{3}\right)^2=\dfrac{16}{9}\)

\(A=\dfrac{x^{18}-1}{x^{18}+1}=\dfrac{\dfrac{16}{9}-1}{\dfrac{16}{9}+1}=\dfrac{7}{25}\)

17 tháng 3 2017

16/9

Câu 1:Biết Giá trị của biểu thức là = Câu 2:Biểu thức đạt giá trị lớn nhất tại Câu 3:Một hình thang có độ dài hai đáy là 3cm và 11cm.Vậy độ dài đường trung bình của hình thang đó là cm. Câu 4:Nghiệm không nguyên của phương trình là = Nhập kết quả dưới dạng số thập phân gọn nhất. Câu 5:Tổng các nghiệm của phương trình là (Nhập kết quả dưới dạng số thập phân...
Đọc tiếp
Câu 1:Biết Giá trị của biểu thức =
Câu 2:Biểu thức đạt giá trị lớn nhất tại
Câu 3:Một hình thang có độ dài hai đáy là 3cm và 11cm.Vậy độ dài đường trung bình của hình thang đó là cm.
Câu 4:Nghiệm không nguyên của phương trình =
Nhập kết quả dưới dạng số thập phân gọn nhất.
Câu 5:Tổng các nghiệm của phương trình
(Nhập kết quả dưới dạng số thập phân gọn nhất).
Câu 6:Hình thang vuông ABCD Có AD=5cm; BC=6,25cm; AB=4cm.
Khi đó diện tích hình thang là
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Câu 7:So sánh ta được
Câu 8:Nghiệm lớn nhất của phương trình
Câu 9:Cho có diện tích . Gọi N là trung điểm BC.
M trên AC sao cho . AN cắt BM tại O.Khi đó diện tích của tam giác OAM bằng .
Câu 10:Biết Khi đó giá trị của
(Nhập kết quả dưới dạng số thập phân gọn nhất )
Nộp
9
19 tháng 2 2017

10) \(9x^2+4y^2=20xy\)

\(\Leftrightarrow\left(3x-2y\right)^2=8xy\)

\(\Rightarrow\left(3x-2y\right)=\sqrt{8xy}\)

--- \(9x^2+4y^2=20xy\)

\(\Leftrightarrow\left(3x+2y\right)^2=32xy\)

\(\Rightarrow\left(3x+2y\right)=\sqrt{32xy}\)

\(A=\frac{3x-2y}{3x+2y}=\frac{\sqrt{8xy}}{\sqrt{32xy}}=\frac{1}{2}=0,5\)

19 tháng 2 2017

5) \(x^3+8-\left(x+2\right)\left(x^2+3x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2x+4\right)-\left(x+2\right)\left(x^2+3x+3\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(-5x+1\right)=0\)

\(\Leftrightarrow\left[\begin{matrix}x+2=0\Leftrightarrow x=-2\\-5x+1=0\Leftrightarrow x=0,2\end{matrix}\right.\)

Tổng các nghiệm là: -2+0,2=-1,8

7 tháng 11 2016

dàigianroi

8 tháng 11 2016

uk

 

20 tháng 10 2017

2. \(x^2-2xy+y^2=\left(x-y\right)^2\)

Thay x = 2,35 và y = 0,35 vào biểu thức ta có:

\(\left(2,35-0,35\right)^2=2^2=4\)

20 tháng 10 2017

Câu 7.

= x3 - y3 + x3 + y3

=2x3

Thay x = 1 và y = 2,016 vào biểu thức ta có:

2 . 13 = 2

2 tháng 3 2017

\(9x^2+4y^2=20xy\)

\(\Leftrightarrow\left(3x\right)^2+\left(2y\right)^2-20xy=0\)

\(\Leftrightarrow\left(3x\right)^2+\left(2y\right)^2-12xy-8xy=0\)

\(\Leftrightarrow\left(3x-2y\right)^2-8xy=0\)

\(\Leftrightarrow\left(3x-2y\right)^2=8xy\)

\(\Leftrightarrow3x-2y=\sqrt{8xy}\)(1)

- \(9x^2+4y^2=20xy\)

\(\Leftrightarrow\left(3x\right)^2+\left(2y\right)^2-20xy=0\)

\(\Leftrightarrow\left(3x\right)^2+\left(2y\right)^2+12xy-32xy=0\)

\(\Leftrightarrow\left(3x+2y\right)^2-32xy=0\)

\(\Leftrightarrow\left(3x+2y\right)^2=32xy\)

\(\Leftrightarrow3x+2y=\sqrt{32xy}\)(2)

Thay (1) và (2) vào A, ta có:

\(A=\dfrac{3x-2y}{3x+2y}=\dfrac{\sqrt{8xy}}{\sqrt{32xy}}=0,5\)

27 tháng 2 2017

vòng mấy thế

27 tháng 2 2017

Câu 8:

Ta có: \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{49.51}=\frac{6x-5}{10x+1}\)

\(\Rightarrow\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right)=\frac{6x-5}{10x+1}\)

\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+..+\frac{1}{49}-\frac{1}{51}=\frac{6x-5}{10x+1}.2\)

\(\Rightarrow1-\frac{1}{51}=\frac{12x-10}{10x+1}\)

\(\Rightarrow\frac{50}{51}=\frac{12x-10}{10x+1}\)

\(\Rightarrow612x-510=500x+50\)

\(\Rightarrow112x=660\)

\(\Rightarrow x=5\)

Vậy x = 5

Câu 1:Hình thoi có diện tích và tổng độ dài hai đường chéo là . Cạnh của hình thoi là . Câu 2:Một ô tô phải đi quãng đường AB dài 90km trong một thời gian nhất định. Ô tô đi quãng đường đầu với vận tốc lớn hơn dự định 25km/giờ và đi quãng đường còn lại với vận tốc kém vận tốc ban đầu 20km/giờ. Biết ô tô đến B đúng thời gian đã định. Vậy thời gian ô tô đi quãng...
Đọc tiếp
Câu 1:Hình thoi có diện tích và tổng độ dài hai đường chéo là . Cạnh của hình thoi là .
Câu 2:Một ô tô phải đi quãng đường AB dài 90km trong một thời gian nhất định. Ô tô đi quãng đường đầu với vận tốc lớn hơn dự định 25km/giờ và đi quãng đường còn lại với vận tốc kém vận tốc ban đầu 20km/giờ. Biết ô tô đến B đúng thời gian đã định. Vậy thời gian ô tô đi quãng đường AB là giờ.
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Câu 3:Một đa giác có số đường chéo nhiều hơn số cạnh là 18. Vậy số cạnh của đa giác đó là cạnh.
Câu 4:Cho x,y thỏa mãn đẳng thức: Vậy x + y =
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Câu 5:Cho . Vậy giá trị biểu thức
Câu 6:Giá trị thỏa mãn:
Câu 7:Tập nghiệm của phương trình:{}.
(Nhập kết quả theo thứ tự tăng dần,ngăn cách nhau bởi dấu ";" )
Câu 8:Cho . Vậy giá trị biểu thức
(Nhập kết quả dưới dạng số thập phân gọn nhất)
Câu 9:Cho thỏa mãn điều kiện Vậy giá trị nhỏ nhất của
Câu 10:Giá trị nhỏ nhất của biểu thức
Nộp bài
3
6 tháng 4 2017

Câu 10

Ta có: \(x^2\ge0\)

\(\Rightarrow x^2-6\ge-6\)

Dấu " = " khi \(x^2=0\Rightarrow x=0\)

\(\Rightarrow\left(x^2-6\right)^2\ge36\)

\(\Rightarrow A=\left(x^2-6\right)^2-12\ge24\)

Vậy \(MIN_A=24\) khi x = 0

6 tháng 4 2017

ABCDxyzO

Gọi O là giao điểm của BD và AC

Đặt BO=x,CO=y,BC=z

Vì O là giao điểm hai đường chéo hình thoi

\(\Rightarrow\) BO=\(\dfrac{1}{2}BD\) , CO=\(\dfrac{1}{2}AC\)

Hay x=\(\dfrac{1}{2}BD\) , y=\(\dfrac{1}{2}AC\)

Ta có: SABCD=\(\dfrac{BD.AC}{2}\)=\(\dfrac{2x.2y}{2}\)=2xy

Hay 2xy= 162,24cm2

Ta có BD+AC=36,4cm

hay 2x+2y=36,4cm

\(\Rightarrow\) x+y=\(\dfrac{36,4}{2}=18,2cm\)

\(\Rightarrow\) (x+y)2=18,2.18,2=331,24cm2

\(\Rightarrow\) x2+2xy+y2= 331,24cm2

hay x2+y2+ 162,24cm2=331,24cm2

\(\Rightarrow\) x2+y2= 331,24cm2-162,24cm2=169cm2

Ta có BD\(\perp\)AC (AC,BD là đường chéo của hình thoi ABCD)

\(\Rightarrow\) BO\(\perp\)OC

\(\Rightarrow\) \(\bigtriangleup\)BOC vuông tại O

Áp dụng định lý py-ta-go vào tam giác vuông BOC ta có:

BO2+OC2=BC2

hay x2+y2=BC2

\(\Rightarrow\) BC2=x2+y2=169cm2

\(\Rightarrow\) BC=\(\sqrt{169cm^2}\) =13cm

Mà các cạnh của hình thoi luôn bằng nhau,từ đó suy ra:

Cạnh của hình thoi dài 13cm.

7 tháng 7 2017

Hỏi gì mà nhiều thế??????????/