Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu1: theo công thức ta có:
AH^2=HB*HC
=25*64=1600
=>AH=40
=>tanB=AH/BH=40/25
=8/5
=>gócB=58 độ
=>gócC=90-58=32 độ
Giả sử hình thang cân ABCD có AB = 12cm, CD = 18cm, ˆD=75∘
Kẻ AH⊥CD,BK⊥CD
Vì tứ giác ABKH là hình chữ nhật nên: AB = HK = 12 (cm)
Ta có: tam giác ADH = tam giác BCK (cạnh huyền, góc nhọn)
Suy ra: DH = CK
Suy ra:
DH=(CD–HK) / 2=(18–12 ) /2=3(cm)
Trong tam giác vuông ADH, ta có:
AH=DH.tgD=3.tg75∘≈11,196(cm)
Vậy:
SABCD=[ (AB+CD) / 2 ] *AH ≈ [ (12+18) / 2 ] *11,196=167,94
Lời giải:
Từ $A$ kẻ $AH\perp BC$.
Xét tam giác $ABH$: $\frac{AH}{BH}=\tan B$
$\Rightarrow BH=\frac{AH}{\tan B}=\frac{AH}{\tan 50^0}$
Xét tam giác $ACH$: $\frac{AH}{CH}=\tan C$
$\Rightarrow CH=\frac{AH}{\tan C}=\frac{AH}{\tan 30^0}$
Do đó:
$BC=BH+CH=AH(\frac{1}{\tan 50^0}+\frac{1}{\tan 30^0})$
$10=AH(\frac{1}{\tan 50^0}+\frac{1}{\tan 30^0})$
$AH=3,89$ (cm)
$S_{ABC}=\frac{AH.BC}{2}=\frac{3,89.10}{2}=19,45$ (cm vuông)
a,Gọi phân giác ứng với cạnh huyền là AD
=>BD/CD=3/4
vì AD là p,giac góc A=>BD/CD=AB/AC=3/4
=>AB=3/4AC
Aps dụng định lí Py-ta-go:=>AB^2+AC^2=BC^2=100
<=>(3/4AC)^2+AC^2=100
<=>25/16AC^2=100
<=>AC=8(cm)
=>AB=3/4AC=6(cm)
b, Xét tam giác ABC có góc A = 90độ và AH là đường cao (gt) => Áp dụng hệ thức lượng tam giác vuông ta có:
1/(AH²) = 1/(AB²) + 1/(AC²)
<=> 1/(AH²) = 1/(6²) + 1/(8²)
<=> 1/(AH²) = 1/36 + 1/64
<=> 1/(AH²) = 25/576
=> 1/AH = 5/24
=> AH = 24/5 =4,8(cm)