Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : P = \(7^2+7^3+7^4+....+7^{2016}\)
chia hết cho 120 nên chia hết cho 20 nhé cm đi
P= 7 + \(7^2+7^3+7^4+...+7^{2016}\)
=\(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)+...+\left(7^{2013}+7^{2014}+7^{2015}+7^{2016}\right)\)
=\(\left(7+7^2+7^3+7^4\right)+7^4\left(7+7^2+7^3+7^4\right)+...+7^{2012}\left(7+7^2+7^3+7^4\right)\)=2800+\(7^4\).2800+..+\(7^{2012}\).2800 \(⋮\) \(20^2\) ( Vì 2800 \(⋮\)\(20^2\))
=> P\(⋮\) \(20^2\)
P=7(1+7+72+73+...+72015)
P=7[(1+7+72+73)+(74+75+76+77)+...+(72012+72013+72014+72015)]
P=7[400+74(1+7+72+73)+...+72012(1+7+72+73)]
P=7[400(1+74+...+72012)]
P=202[7(1+74+...+72012)] chia hết cho 202 (đpcm)
\(7^{2018}+7^{2017}-7^{2016}\)
\(=7^{2016}\left(7^2+7-1\right)=7^{2016}.55⋮11\)
\(\Rightarrowđpcm\)
\(7^{2018}+7^{2017}-7^{2016}\)
\(=7^{2016}\left(7^2+7-1\right)\)
\(=7^{2016}.55⋮11\)
\(\Rightarrow\) đpcm
a,7^4 x (7^2 + 7 - 1 ) = 7^4 x ( 49 + 7 - 1 ) = 7^4 x 55 chia het cho 55
b, hình như bạn ghi đè sai thì phải , nếu đúng thì chia hết cho 11= (3^4)^7 - (3^3)^9 + 3^29 = 3^28 - 3^27 + 3^29 = 3^27 x ( 3 - 1 + 3^2 ) = 3^27 x( 3 -1 + 9 )= 3^27 x 11
a) 76 + 75 - 74 = 74(72 + 7 - 1) = 74.55 chia hết cho 55
b) 817 - 279 + 329 = (34)7 - (33)9 + 329 = 328 - 327 + 329 = 326(32 - 3 + 33) = 326.33 chia hết cho 33
c) 812 - 233 - 230 = (23)12 - 233 - 230 = 236 - 233 - 230 = 230(26 - 23 - 1) = 230.55 chia hết cho 55
d) 109 + 108 + 107 = 107(102 + 10 + 1) = 107.111 mà 107 chia hết cho 5(vì tận cùng là 0) => 109 + 108 + 107 chia hết : 111.5 = 555
e) 911 - 910 - 99 = 98(93 - 92 - 9) = 98.639 chia hết cho 639 =>\(\frac{9^{11}-9^{10}-9^9}{639}\in N\)
f) 817 - 279 - 913 = (34)7 - (33)9 - (32)13 = 328 - 327 - 326 = 324(34 - 33 - 32) = 324.45 chia hết cho 45.
a) 76+75-74
= 74(72+7-1)
= 74 . 55 chia hết cho 55 (đpcm)
b) Thôi tôi đi ngủ đây nhớ k cho tôi
\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6+...+\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(A=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(A=\left(-7\right)\left(1+-7+7^2\right)+\left(-7\right)^4\left(1+-7+7^2\right)+...+\left(-7\right)^{2005}\left(1+-7+7^2\right)\)
\(A=\left(-7\right)\cdot43+\left(-7\right)^4\cdot43+...+\left(-7\right)^{2005}\cdot43\)
\(A=43\left[\left(-7\right)+\left(-7\right)^4+...+\left(-7\right)^{2008}\right]⋮43\left(đpcm\right)\)
P=7(1+7+72+73+...+72015)
P=7[(1+7+72+73)+(74+75+76+77)+...+(72012+72013+72014+72015)]
P=7[400+74(1+7+72+73)+...+72012(1+7+72+73)]
P=7[400(1+74+...+72012)]
P=202[7(1+74+...+72012)] chia hết cho 202 (đpcm)
bạn làm hơi tắt