Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)
\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)
\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)
\(=>x+2001=0\)
\(x=-2001\)
\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)
\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
\(=>x+1998=0\)
\(x=-1998\)
dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a)
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{n+1}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{n}{n+1}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot n}{2\cdot3\cdot4\cdot...\cdot\left(n+1\right)}\)
\(=\frac{1}{n+1}\)
1) \(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
<=> \(\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
<=> \(x+1=0\) (do 1/2 + 1/3 + 1/4 - 1/5 - 1/6 khác 0)
<=> \(x=-1\)
Vậy...
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+1+\frac{x+2}{2008}+1+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
<=> \(\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> \(x+2010=0\) (do 1/2009 + 1/2008 + 1/2007 - 1/2000 - 1/1999 - 1/1998 khác 0)
<=> \(x=-2010\)
Vậy....
d) \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
<=> \(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}-\frac{x+10}{2000}-\frac{x+11}{1999}-\frac{x+12}{1998}=0\)
<=> \(\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+10}{2000}+1\right)-\left(\frac{x+11}{1999}+1\right)-\left(\frac{x+12}{1998}+1=0\right)\)
<=> \(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
<=>\(\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
<=> x+2010 = 0 vì \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\ne0\)
<=> x = -2010
1/\(\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}=\frac{x+1}{5}+\frac{x+1}{6}\)
\(\Leftrightarrow\frac{x+1}{2}+\frac{x+1}{3}+\frac{x+1}{4}-\frac{x+1}{5}-\frac{x+1}{6}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
Vì\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}>0\)nên để biểu thức có giá trị là 0 thì x+1=0 <=> x=-1
2/Tương tự bài 2 bạn cộng mỗi vế cho 3 mỗi biểu thức cộng cho 1 thỳ bn sẽ tìm đc kq là -2010
3/ trừ 2 cho mỗi vế, mỗi biểu thức trừ cho 1, lập luận ta có x=100
4/ bài này chuyển -3 qua vế trái thành 3 rồi tách, nhóm mỗi biểu thức với 1 ta có x=-10
1/�+12+�+13+�+14=�+15+�+162x+1+3x+1+4x+1=5x+1+6x+1
⇔�+12+�+13+�+14−�+15−�+16=0⇔2x+1+3x+1+4x+1−5x+1−6x+1=0
⇔(�+1)(12+13+14−15−16)=0⇔(x+1)(21+31+41−51−61)=0
Vì12+13+14−15−16>021+31+41−51−61>0nên để biểu thức có giá trị là 0 thì x+1=0 <=> x=-1
2/Tương tự bài 2 bạn cộng mỗi vế cho 3 mỗi biểu thức cộng cho 1 thỳ bn sẽ tìm đc kq là -2010
3/ trừ 2 cho mỗi vế, mỗi biểu thức trừ cho 1, lập luận ta có x=100
4/ bài này chuyển -3 qua vế trái thành 3 rồi tách, nhóm mỗi biểu thức với 1 ta có x=-10
1/�+12+�+13+�+14=�+15+�+162x+1+3x+1+4x+1=5x+1+6x+1
⇔�+12+�+13+�+14−�+15−�+16=0⇔2x+1+3x+1+4x+1−5x+1−6x+1=0
⇔(�+1)(12+13+14−15−16)=0⇔(x+1)(21+31+41−51−61)=0
Vì12+13+14−15−16>021+31+41−51−61>0nên để biểu thức có giá trị là 0 thì x+1=0 <=> x=-1
2/Tương tự bài 2 bạn cộng mỗi vế cho 3 mỗi biểu thức cộng cho 1 thỳ bn sẽ tìm đc kq là -2010
3/ trừ 2 cho mỗi vế, mỗi biểu thức trừ cho 1, lập luận ta có x=100
4/ bài này chuyển -3 qua vế trái thành 3 rồi tách, nhóm mỗi biểu thức với 1 ta có x=-10
\(\frac{-1}{2000\cdot1999}-\frac{1}{1999\cdot1998}-\frac{1}{1998\cdot1997}\)
\(=-\left(\frac{1}{2000\cdot1999}+\frac{1}{1999\cdot1998}+\frac{1}{1998\cdot1997}\right)\)
\(=-\left(\frac{1}{1997\cdot1998}+\frac{1}{1998\cdot1999}+\frac{1}{1999\cdot2000}\right)\)
\(=-\left(\frac{1}{1997}-\frac{1}{1998}+\frac{1}{1998}-\frac{1}{1999}+\frac{1}{1999}-\frac{1}{2000}\right)\)
\(=-\left(\frac{1}{1997}-\frac{1}{2000}\right)\)
\(=-\frac{3}{3994000}\)
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Rightarrow\frac{x+1}{2009}+1+\frac{x+2}{2008}+x+\frac{x+3}{2007}+1=\frac{x+10}{2000}+1+\frac{x+11}{1999}+1+\frac{x+12}{1998}+1\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}\)
\(\Rightarrow\left(x+2010\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\ne0\)
Nên x + 2010 = 0 => x = -2010
P/s: Công vào 6 phân thức trên, mỗi phân thức công thêm 1 rồi quy đồng lên ta được:
\(\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
Ta xét: \(\hept{\begin{cases}\frac{1}{2009}< \frac{1}{2000}\\\frac{1}{2008}< \frac{1}{1999}\\\frac{1}{2007}< \frac{1}{1998}\end{cases}}\Rightarrow\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}< 0\)
=> \(x+2010=0\Rightarrow x=-2010\)
Vậy x = -2010
\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)
\(\Leftrightarrow\left(1+\frac{x+1}{2009}\right)+\left(1+\frac{x+2}{2008}\right)+\left(1+\frac{x+3}{2007}\right)\)
\(=\left(1+\frac{x+10}{2000}\right)+\left(1+\frac{x+11}{1999}\right)+\left(1+\frac{x+12}{1998}\right)\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)
\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)
\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)
\(\Leftrightarrow x+2010=0\)
\(\Leftrightarrow x=-2010\)
Án vào đây
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath