Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)
Vậy GTLN của A là -1 khi x = 3
\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)
Vậy GTLN của B là -8 khi x = -1
\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)
Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)
\(D=-x^2-y^2+2x-4y-10\)
\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)
\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)
Vậy GTLN của D là -5 khi x = 1; y = -2
\(a,A=-x^2+6x-10\)
\(=-x^2+6x-9-1\)
\(=-\left(x^2-6x+9\right)-1\)
\(=-\left(x-3\right)^2-1\)
Ta có: \(-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2-1\le-1\forall x\)
=> Max A =-1 tại \(-\left(x-3\right)^2=0\Rightarrow x=3\)
cn lại lm tg tự
=.= hok tốt!!
a) A= -x2 + 6x -10
= -(x2 - 6x) -10
= -(x2 - 2. x .3 +32 -9)- 10
= -( x-3 )2 +9 -10
= - (x-3)2 -1 \(\le\)-1 với mọi giá trị của x
Dấu '' = '' xảy ra khi và chỉ khi
x-3 =0
\(\Leftrightarrow\)x=3
Vậy giá trị lớn nhất của biểu thức A là -1 tại x =3
CÁC PHẦN KHÁC CẬU LÀM TƯƠNG TỰ
b) B= -2x2-4x-10
= -2(x2+ 2x ) -10
= -2 (x2 +2x+12 -1)-10
=-2(x+1)2 +2 -10
=-2(x+1)2 -8 \(\le\)-8 với mọi giá trị của x
Dấu " ='' xảy ra khi và chỉ khi
x+1=0
............................
c) C= -2x2 +3x -10
= -2(x2 -\(\frac{3}{2}\)x) -10
= -2( x2 - 2.x.\(\frac{3}{4}\)+ \(\frac{3^2}{4^2}\)-\(\frac{9}{16}\))-10
= -2(x-\(\frac{3}{4}\))2 +\(\frac{9}{8}\)-10
=-2(x- \(\frac{3}{4}\))2 +\(\frac{-71}{8}\)\(\le\)\(\frac{-71}{8}\)với mọi giá trị của x
Dấu bằng ''='' xảy ra khi và chi khi
x-\(\frac{3}{4}\)=0
.......................................................
d) D= -x2 -y2+2x-4y -10
=(-x2+2x) +( -y2 -4y) -10
= -(x2 -2x+1 -1) -(y2 +4y+22-4 )-10
=-(x-1)2 +1 -(y+2)2 +4 -10
=-(x-1)2 - (y+2)2 -5 \(\le\)5 với mọi giá tri của x
Dấu '' ='' xảy ra khi và chỉ khi
\(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)
......................................................
e) XIN LỖI TỚ CHƯA NGHĨ RA
Lời giải:
\(P=\frac{2xy^2(4x^4y^4+x^2)}{2xy^2}-\frac{3x^3y^2(2x-1)}{3x^3y^2}=4x^4y^4+x^2-(2x-1)\)
\(=4x^4y^4+(x^2-2x+1)=(2x^2y^2)^2+(x-1)^2\)
Do $(2x^2y^2)^2\geq 0; (x-1)^2\geq 0$ với mọi $x,y\in\mathbb{R}$
Do đó $P\geq 0$
Vậy GTNN của $P$ là $0$. Dấu "=" xảy ra khi $2x^2y^2=0$ và $x-1=0$ hay $y=0; x=1$
\(\frac{3x^2+6x+10}{x^2+2x+3}=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\frac{1}{x^2+2x+3}=3+\frac{1}{\left(x+1\right)^2+2}\)
Ta có : \(\left(x+1\right)^2+2\ge2\forall x\)
\(\Rightarrow\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)
\(\Rightarrow3+\frac{1}{\left(x+1\right)^2+2}\le\frac{7}{2}\forall x\) có GTLN là \(\frac{7}{2}\) tại x = - 1
Vậy .................
\(\frac{3x^2+6x+10}{x^2+2x+3}=\frac{3x^2+6x+6}{x^2+2x+3}+\frac{4}{x^2+2x+3}=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{4}{\left(x^2+2x+1\right)+2}\)
\(=3+\frac{4}{\left(x+1\right)^2+2}\)
Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+2\ge2\Rightarrow\frac{4}{\left(x+1\right)^2+2}\le2\Rightarrow3+\frac{4}{\left(x+1\right)^2+2}\le5\)
=>giá trị nhỏ nhất của biểu thức là 5 <=>(x+1)2=0 <=. x+1=0 <=> x=-1
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
\(P=-3x^2+6x-y^2+3y+10\)
\(=-3x^2+6x-3-y^2+3y-\frac{9}{4}+\frac{61}{4}\)
\(=-3\left(x^2-2x+1\right)-\left(y^2-3y+\frac{9}{4}\right)+\frac{61}{4}\)
\(=-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2+\frac{61}{4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-1\right)^2\le0\forall x\)
\(\left(y-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-\left(y-\frac{3}{2}\right)^2\le0\forall y\)
\(\Rightarrow-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2\le0\forall x,y\)
\(\Rightarrow-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2+\frac{61}{4}\le\frac{61}{4}\forall x,y\)
hay \(P\le\frac{61}{4}\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{3}{2}\end{cases}}\)
Vậy \(maxP=\frac{61}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{3}{2}\end{cases}}\)
P = -3x2 + 6x - y2 + 3y + 10
⇔ -P = 3x2 - 6x + y2 - 3y - 10
= ( 3x2 - 6x + 3 ) + ( y2 - 3y + 9/4 ) - 61/4
= 3( x2 - 2x + 1 ) + ( y - 3/2 )2 - 61/4
= 3( x - 1 )2 + ( y - 3/2 )2 - 61/4 ≥ -61/4 ∀ x, y
Dấu "=" xảy ra khi x = 1 ; y = 3/2
=> -P ≥ -61/4
=> P ≤ 61/4
=> MaxP = 61/4 ⇔ x = 1 ; y = 3/2