K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

\(P=-3x^2+6x-y^2+3y+10\)

\(=-3x^2+6x-3-y^2+3y-\frac{9}{4}+\frac{61}{4}\)

\(=-3\left(x^2-2x+1\right)-\left(y^2-3y+\frac{9}{4}\right)+\frac{61}{4}\)

\(=-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2+\frac{61}{4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow-3\left(x-1\right)^2\le0\forall x\)

\(\left(y-\frac{3}{2}\right)^2\ge0\forall x\)\(\Rightarrow-\left(y-\frac{3}{2}\right)^2\le0\forall y\)

\(\Rightarrow-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2\le0\forall x,y\)

\(\Rightarrow-3\left(x-1\right)^2-\left(y-\frac{3}{2}\right)^2+\frac{61}{4}\le\frac{61}{4}\forall x,y\)

hay \(P\le\frac{61}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-\frac{3}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{3}{2}\end{cases}}\)

Vậy \(maxP=\frac{61}{4}\)\(\Leftrightarrow\hept{\begin{cases}x=1\\y=\frac{3}{2}\end{cases}}\)

25 tháng 10 2020

P = -3x2 + 6x - y2 + 3y + 10

⇔ -P = 3x2 - 6x + y2 - 3y - 10

          = ( 3x2 - 6x + 3 ) + ( y2 - 3y + 9/4 ) - 61/4 

          = 3( x2 - 2x + 1 ) + ( y - 3/2 )2 - 61/4

          = 3( x - 1 )2 + ( y - 3/2 )2 - 61/4 ≥ -61/4 ∀ x, y

Dấu "=" xảy ra khi x = 1 ; y = 3/2

=> -P ≥ -61/4

=> P ≤ 61/4

=> MaxP = 61/4 ⇔ x = 1 ; y = 3/2

4 tháng 8 2018

\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)

Vậy GTLN của A là -1 khi x = 3

\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)

Vậy GTLN của B là -8 khi x = -1

\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)

Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)

\(D=-x^2-y^2+2x-4y-10\)

\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)

\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)

Vậy GTLN của D là -5 khi x = 1; y = -2

30 tháng 7 2018

\(a,A=-x^2+6x-10\)

\(=-x^2+6x-9-1\)

\(=-\left(x^2-6x+9\right)-1\)

\(=-\left(x-3\right)^2-1\)

Ta có: \(-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2-1\le-1\forall x\)

=> Max A =-1 tại \(-\left(x-3\right)^2=0\Rightarrow x=3\)

cn lại lm tg tự 

=.= hok tốt!!

30 tháng 7 2018

a) A= -x2 + 6x -10

       = -(x2 - 6x) -10

       =  -(x2 - 2. x .3 +32 -9)- 10

      = -( x-3 )2  +9 -10 

      = - (x-3)2 -1 \(\le\)-1 với mọi giá trị của x

       Dấu '' = '' xảy ra khi và chỉ khi

               x-3 =0

               \(\Leftrightarrow\)x=3

Vậy giá trị lớn nhất của biểu thức A là -1 tại x =3

CÁC PHẦN KHÁC CẬU LÀM TƯƠNG TỰ

b) B= -2x2-4x-10

        = -2(x2+ 2x ) -10

        = -2 (x2 +2x+12 -1)-10

         =-2(x+1)2 +2 -10

        =-2(x+1)2 -8  \(\le\)-8 với mọi giá trị của x

Dấu " ='' xảy ra khi và chỉ khi

        x+1=0

............................

c) C= -2x2 +3x -10

       = -2(x2 -\(\frac{3}{2}\)x) -10

       = -2( x2 - 2.x.\(\frac{3}{4}\)\(\frac{3^2}{4^2}\)-\(\frac{9}{16}\))-10

       = -2(x-\(\frac{3}{4}\))+\(\frac{9}{8}\)-10

        =-2(x- \(\frac{3}{4}\))2 +\(\frac{-71}{8}\)\(\le\)\(\frac{-71}{8}\)với mọi giá trị của x

Dấu  bằng ''='' xảy ra khi và chi khi  

     x-\(\frac{3}{4}\)=0

   .......................................................

d)  D= -x2 -y2+2x-4y -10

          =(-x2+2x) +( -y2 -4y) -10

          = -(x2 -2x+1 -1) -(y2 +4y+22-4 )-10 

          =-(x-1)2 +1  -(y+2)2 +4 -10

           =-(x-1)2 - (y+2)2 -5   \(\le\)5  với mọi giá tri của x

Dấu '' ='' xảy ra khi và chỉ khi  

\(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)

......................................................

e) XIN LỖI TỚ CHƯA NGHĨ RA

                          

       

AH
Akai Haruma
Giáo viên
16 tháng 1 2020

Lời giải:
\(P=\frac{2xy^2(4x^4y^4+x^2)}{2xy^2}-\frac{3x^3y^2(2x-1)}{3x^3y^2}=4x^4y^4+x^2-(2x-1)\)

\(=4x^4y^4+(x^2-2x+1)=(2x^2y^2)^2+(x-1)^2\)

Do $(2x^2y^2)^2\geq 0; (x-1)^2\geq 0$ với mọi $x,y\in\mathbb{R}$

Do đó $P\geq 0$

Vậy GTNN của $P$ là $0$. Dấu "=" xảy ra khi $2x^2y^2=0$ và $x-1=0$ hay $y=0; x=1$

13 tháng 6 2017

\(\frac{3x^2+6x+10}{x^2+2x+3}=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}=3+\frac{1}{x^2+2x+3}=3+\frac{1}{\left(x+1\right)^2+2}\)

Ta có : \(\left(x+1\right)^2+2\ge2\forall x\)

\(\Rightarrow\frac{1}{\left(x+1\right)^2+2}\le\frac{1}{2}\forall x\)

\(\Rightarrow3+\frac{1}{\left(x+1\right)^2+2}\le\frac{7}{2}\forall x\) có GTLN là \(\frac{7}{2}\) tại x = - 1

Vậy .................

13 tháng 6 2017

\(\frac{3x^2+6x+10}{x^2+2x+3}=\frac{3x^2+6x+6}{x^2+2x+3}+\frac{4}{x^2+2x+3}=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{4}{\left(x^2+2x+1\right)+2}\)

\(=3+\frac{4}{\left(x+1\right)^2+2}\)

Vì \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+2\ge2\Rightarrow\frac{4}{\left(x+1\right)^2+2}\le2\Rightarrow3+\frac{4}{\left(x+1\right)^2+2}\le5\)

=>giá trị nhỏ nhất của biểu thức là 5 <=>(x+1)2=0 <=. x+1=0 <=> x=-1

5 tháng 7 2017

https://olm.vn/hoi-dapDễ z mà ko bít ..

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)