Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\begin{array}{l}{A_0} = 100\\{A_1} = 100 + 100 \times 0,008 - 2 = 98,8\\{A_2} = 98,8 + 98,8 \times 0,008 - 2 = 97,59\\{A_3} = 97,59 + 97,59 \times 0,008 - 2 = 96,37\\{A_4} = 96,37 + 96,37 \times 0,008 - 2 = 95,14\\{A_5} = 95,14 + 95,14 \times 0,008 - 2 = 93,9\\{A_6} = 93,90 + 93,90 \times 0,008 - 2 = 92,65\end{array}\)
Vậy sau 6 tháng số tiền chị Hương còn nợ là 92,65 triệu đồng.
b, Ta có:
\(\begin{array}{l}{A_0} = 100\\{A_1} = {A_0} + {A_0} \times 0,008 - 2 = 1,008{A_0} - 2\\{A_2} = {A_1} + {A_1} \times 0,008 - 2 = 1,008{A_1} - 2\\{A_3} = {A_2} + {A_2} \times 0,008 - 2 = 1,008{A_2} - 2\\...\\ \Rightarrow {A_n} = {A_{n - 1}} + {A_{n - 1}} \times 0,008 - 2 = 1,008{A_{n - 1}} - 2\end{array}\)
Đáp án D
Áp dụng công thức 73 = 50(1+r)8 ta được lãi suất một quý là r = 73 50 8 - 1 ≈ 0 , 0484 .
Do đó lãi suất một tháng là r : 3 ≈ 0 , 0161 .
a) Số tiền ông An nhận được sau 1 tháng:
\({A_1} = 100{\left( {1 + \frac{{0,06}}{{12}}} \right)^1} = 100,5\) (triệu đồng)
Số tiền ông An nhận được sau 2 tháng:
\({A_2} = 100{\left( {1 + \frac{{0,06}}{{12}}} \right)^2} = 101,0025\) (triệu đồng)
b) Số tiền ông An nhận được sau 1 năm:
\({A_{12}} = 100{\left( {1 + \frac{{0,06}}{{12}}} \right)^{12}} = 106,1678\) (triệu đồng)
Số năm để người đó có được tổng số tiền cả vốn và lãi 15 triệu đồng là:
\(y_1=log_{1,06}\left(\dfrac{15}{10}\right)\simeq7\left(năm\right)\)
Số năm để người đó có được tổng số tiền cả vốn và lãi 20 triệu đồng là:
\(y_2=log_{1,06}\left(\dfrac{20}{10}\right)\simeq12\left(năm\right)\)
a) Số tiền chị có trong ngân hàng sau tháng 1 là:
\({P_1} = 100 + 100.0,5\% + 6 = 106,5\) (triệu đồng)
b) Số tiền chị có trong ngân hàng sau 2 tháng là:
\({P_2} = 106,5 + 106,5.0,5\% + 6 = 113,0325\) (triệu đồng)
Số tiền chị có trong ngân hàng sau 3 tháng là:
\({P_1} = 113,0325 + 113,0325.0,5\% + 6 \approx 119,6\) (triệu đồng)
c) Dự đoán công thức của \({P_n}\): \({P_n} = 100.{\left( {1 + 0,5\% } \right)^n}\)
-Gọi số tiền sinh viên A có được sau n tháng là \(u_n\) (đồng) (\(u_n>0;n\in N\cdot\)).
-Theo đề bài, ta có: \(\left\{{}\begin{matrix}u_1=2.10^6\left(đồng\right)\\u_{n+1}=\left(100\%+0,6\%\right)u_n+10^5=1,006u_n+10^5\left(1\right)\end{matrix}\right.\)
(NHÁP:
-Ta sẽ tạo ra dãy cấp số nhân có liên hệ với (1). Để làm vậy, trước tiên đặt \(v_n=u_n-a\Rightarrow u_n=v_n+a\) (a là hằng số).
Khi đó \(v_{n+1}+a=1,006\left(v_n+a\right)+10^5\)
\(\Rightarrow v_{n+1}=1,006v_n+\left(1,006a-a+10^5\right)\)
Để tạo thành cấp số nhân, \(1,006a-a+10^5=0\), giải ra ta được: \(a=\dfrac{-5.10^7}{3}\))
*Đặt \(v_n=u_n+\dfrac{5.10^7}{3}\Rightarrow u_n=v_n-\dfrac{5.10^7}{3}\). Thế vào (1) ta được:
\(v_{n+1}=1,006v_n\) => \(\left(v_n\right)\) là cấp số nhân với \(q=1,006\)
Ta lại có: \(v_1=u_1+\dfrac{5.10^7}{3}=2.10^6+\dfrac{5.10^7}{3}\)
\(\Rightarrow v_n=\left(2.10^6+\dfrac{5.10^7}{3}\right).1,006^{n-1}\)
\(\Rightarrow u_n=\left(2.10^6+\dfrac{5.10^7}{3}\right).1,006^{n-1}-\dfrac{5.10^7}{3}\)
Vậy sau 12 tháng sinh viên A có:
\(u_{12}=\left(2.10^6+\dfrac{5.10^7}{3}\right).1,006^{11}-\dfrac{5.10^7}{3}=3.269.633,331\left(đồng\right)\)
Sau 1 năm số tiền ông A nhận được là:
\(400\cdot10^6\cdot\left(1+0,05\right)\left(đồng\right)\)
Sau 2 năm số tiền ông A nhận được là:
\(400\cdot10^6\cdot\left(1+0,05\right)\left(1+0,05\right)=400\cdot10^6\cdot\left(1+0,05\right)^2\left(đồng\right)\)
...
Sau 5 năm số tiền ông A nhận được sẽ là:
\(400000000\left(1+0,06\right)^5=535290231\left(đồng\right)\)
Sau 1 năm số tiền ông A nhận được là:
400⋅106⋅(1+0,05)(đ�^ˋ��)400⋅106⋅(1+0,05)(đo^ˋng)
Sau 2 năm số tiền ông A nhận được là:
400⋅106⋅(1+0,05)(1+0,05)=400⋅106⋅(1+0,05)2(đ�^ˋ��)400⋅106⋅(1+0,05)(1+0,05)=400⋅106⋅(1+0,05)2(đo^ˋng)
...
Sau 5 năm số tiền ông A nhận được sẽ là:
400000000(1+0,06)5=535290231(đ�^ˋ��)400000000(1+0,06)5=535290231(đo^ˋng)
Theo đề, ta có: A>=800
=>\(500\left(1+0.075\right)^n>=800\)
=>\(1.075^n>=1.6\)
=>\(n>=log_{1.075}1.6\simeq6.5\)
=>Sau ít nhất 7 năm thì số tiền bác Minh thu được là ít nhất 800 triệu
Gọi unn là số tiền sau mỗi tháng ông An còn nợ ngân hàng.
Lãi suất mỗi tháng là 1% .
Ta có:
u1 = 1 000 000 000 đồng.
u2 = u1 + u1.1% - a = u1(1 + 1%) – a (đồng)
u3 = u1(1 + 1%) – a + [u1(1 + 1%) – a].1% – a = u1(1 + 1%)2 – a(1 + 1%) – a
...
un = u1(1 + 1%)n-1 – a(1 + 1%)n-2 – a(1 + 1%)n-3 – a(1 + 1%)n-4 – ... – a.
Ta thấy dãy a(1 + 1%)n-1; a(1 + 1%)n-3; a(1 + 1%)n-4; ...; a lập thành một cấp số nhân với số hạng đầu a1 = a và công bội q = 1 + 1% = 99% có tổng n – 2 số hạng đầu là:
\({S_{n - 2}} = \frac{{a\left[ {1 - {{\left( {99\% } \right)}^{n - 2}}} \right]}}{{1 - 99\% }} = 100a\left[ {1 - {{\left( {99\% } \right)}^{n - 2}}} \right]\).
Suy ra un = u1(1 + 1%)n-1 – 100a[1 – (99%)n-2].
Vì sau 2 năm = 24 tháng thì ông An trả xong số tiền nên n = 24 và u24 = 0. Do đó ta có:
u24 = u1(1 + 1%)23 – 100a[1 – (99%)22] = 0
⇔ 1 000 000 000.(99%) – 100a[1 – (99%)22] = 0
⇔ a = 40 006 888,25
Vậy mỗi tháng ông An phải trả 40 006 888,25 đồng.