K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

4 người đó là: Sửu, Hùng, Vinh, Đức

5 tháng 6 2020

tại sao

25 tháng 4 2018

a) Số cách chọn 3 người mà không có sự phân biệt về chức vụ trong ban thường vụ bằng số tổ hợp chập 3 của 7 phần tử và bằng C37 = 35 cách chọn.

b) Số cách chọn 3 người với các chức vụ : Bí thư, phó bí thư, ủy viên bằng số chỉnh hợp chập 3 của 7 phần tử và bằng A37 = 210 cách chọn.

Chúc bạn hk tốt ~

Đề bài toán-  Có 5 ngôi nhà, mỗi ngôi nhà được sơn một màu khác nhau.-  Chủ nhân của mỗi ngôi nhà lại mang quốc tịch khác nhau.-  5 chủ nhân của ngôi nhà – mỗi người chỉ thích một loại nước uống, hút một hãng thuốc lá và nuôi một con vật nuôi riêng.-  Không vị chủ nhân nào thích cùng một loại nước uống, hút cùng một hãng thuốc lá và có cùng một loại vật nuôi.Gợi ý:1. Người...
Đọc tiếp

Đề bài toán

-  Có 5 ngôi nhà, mỗi ngôi nhà được sơn một màu khác nhau.

-  Chủ nhân của mỗi ngôi nhà lại mang quốc tịch khác nhau.

-  5 chủ nhân của ngôi nhà – mỗi người chỉ thích một loại nước uống, hút một hãng thuốc lá và nuôi một con vật nuôi riêng.

-  Không vị chủ nhân nào thích cùng một loại nước uống, hút cùng một hãng thuốc lá và có cùng một loại vật nuôi.

Gợi ý:

1. Người Anh sống trong ngôi nhà màu đỏ.

2. Người Thụy Điển nuôi chó.

3. Người Đan Mạch thích uống trà.

4. Ngôi nhà màu xanh lá nằm bên trái ngôi nhà màu trắng.

5. Chủ nhà ngôi nhà xanh lá thích uống cà phê.

6. Người hút thuốc lá Pall Mall nuôi chim.

7. Chủ nhà màu vàng hút thuốc lá Dunhill.

8. Người sống trong ngôi nhà chính giữa phố thích uống sữa.

9. Người Na Uy sống trong ngôi nhà đầu tiên.

10. Người hút thuốc lá Blends sống cạnh người nuôi mèo.

11. Người nuôi ngựa sống cạnh người hút thuốc lá Dunhill.

12. Người hút thuốc Blue Master thích uống bia.

13. Người Đức hút thuốc lá Prince.

14. Người Na Uy sống cạnh ngôi nhà màu xanh lơ.

15. Người hút thuốc lá Blends có người hàng xóm thích uống nước.

Câu hỏi đưa ra: Vậy ai là người nuôi cá?

Giờ thì các bạn hãy cùng lấy giấy, bút và thử trả lời bài toán hóc búa này của Einstein nhé!

Khảo sát: Theo bạn, ai mới là người nuôi cá?

Bạn chỉ có thể chọn một mục. Bình chọn của bạn sẽ được công khai.

Người Đức

Người Thụy Điển

Người Anh

Người Đan Mạch

Người Na Uy

Và giờ thì hãy cùng xem lời giải của bài toán này.

Với việc kẻ bảng thành 5 cột tương ứng với 5 ngôi nhà – 5 dòng để ghi dữ liệu thông tin gợi ý (màu sắc ngôi nhà, quốc tịch, đồ uống, loại thuốc hút, vật nuôi) và dùng phương pháp loại trừ, hẳn các bạn sẽ không quá khó khăn khi giải bài toán trên của Einstein.

3
8 tháng 1 2017
Căn số12345
MàuVàngXanh lơĐỏXanh láTrắng
Quốc tịchNa UyĐan MạchAnhĐứcThuỵ Điển
Nước uốngNướcTràSữaCà phêBia
Thuốc láDunhillBlendsPall MallPrinceBlue Master
Con vậtMèoNgựaChimChó
8 tháng 1 2017

Bạn lấy câu hỏi ở sách " 100 bài tập phát triển trí tuệ - Rèn luyện tư duy Logic - 100 games of Logic " của Pierre Berloquin phải không ?

^^

Em hãy đọc đoạn văn sau:Đọc sách không cốt lấy nhiều, quan trọng nhất là phải chọn cho tinh, đọc cho kĩ. Nếu đọc được 10 quyển sách không quan trọng, không bằng đem thời gian, sức lực đọc 10 quyển ấy mà đọc một quyển thật sự có giá trị. Nếu đọc được mười quyển sách mà chỉ lướt qua, không bằng chỉ lấy một quyển mà đọc mười lần. “Sách cũ trăm lần xem chẳng chán –...
Đọc tiếp

Em hãy đọc đoạn văn sau:

Đọc sách không cốt lấy nhiều, quan trọng nhất là phải chọn cho tinh, đọc cho kĩ. Nếu đọc được 10 quyển sách không quan trọng, không bằng đem thời gian, sức lực đọc 10 quyển ấy mà đọc một quyển thật sự có giá trị. Nếu đọc được mười quyển sách mà chỉ lướt qua, không bằng chỉ lấy một quyển mà đọc mười lần. “Sách cũ trăm lần xem chẳng chán – Thuộc lòng, ngẫm kĩ một mình hay”, hai câu thơ đó đáng làm lời răn cho mỗi người đọc sách. Đọc sách vốn có ích riêng cho mình, đọc nhiều không thể coi là vinh dự, đọc ít cũng không phải là xấu hổ. Đọc ít mà đọc kĩ, thì sẽ tập thành nếp suy nghĩ sâu xa, trầm ngâm tích luỹ, tưởng tượng tự do đến mức làm đổi thay khí chất; đọc nhiều mà không chịu nghĩ sâu, như cưỡi ngựa qua chợ, tuy châu báu phơi đầy, chỉ tổ làm cho mắt hoa ý loạn, tay không mà về. Thế gian có biết bao người đọc sách chỉ để trang trí bộ mặt, như kẻ trọc phú khoe của, chỉ biết lấy nhiều làm quý. Đối với việc học tập, cách đó chỉ là lừa mình dối người, đối với việc làm người thì cách đó thể hiện phẩm chất tầm thường thấp kém…

Và trả lời các câu hỏi dưới đây:

a, Xác định và nêu ngắn gọn tác dụng của một biện pháp so sánh được sử dụng trong đoạn văn trên

b, theo tác giả đọc sách không kĩ sẽ gây nên những tác hại nào 

c, hãy viết đoạn văn khoảng 10 câu trình bày suy nghĩ về chủ đề sau muốn đọc sách có hiệu quả cần phải chọn sách cho tinh

0
1. Khi ở dưới nước bạn có khóc được không?2. Một người quan trọng đến mức nào thì khi bị giết được gọi là “bị ám sát”?3. Tại sao người ta lại so sánh người ngủ ngon là “ngủ như một đứa bé” khi mà con nít cứ vài tiếng lại thức dậy khóc oe oe?4. Nếu bạn uống Pepsi trong khi đang làm việc ở một nhà máy sản xuất Coca Cola, bạn có bị đuổi việc không?5. Tại sao người ta từ...
Đọc tiếp

1. Khi ở dưới nước bạn có khóc được không?

2. Một người quan trọng đến mức nào thì khi bị giết được gọi là “bị ám sát”?

3. Tại sao người ta lại so sánh người ngủ ngon là “ngủ như một đứa bé” khi mà con nít cứ vài tiếng lại thức dậy khóc oe oe?

4. Nếu bạn uống Pepsi trong khi đang làm việc ở một nhà máy sản xuất Coca Cola, bạn có bị đuổi việc không?

5. Tại sao người ta từ mặt đất leo lên các tòa nhà cao tầng rồi trả tiền chỉ để được dùng ống nhòm nhìn những thứ trên mặt đất?

6. Tại sao ở Mỹ, bầu tổng thống thỉ chỉ có 2 ứng cử viên, còn bầu hoa hậu thì có tới 50 ứng cử viên?

7. Nếu một nhân viên trực tổng đài 115 (cấp cứu) bị đau tim, anh ta sẽ gọi cho ai?

8. Tại sao người ta chỉ tay vào cổ tay để hỏi giờ mà không chỉ tay vào đũng quần để hỏi toilet ở đâu?

9. Người mù bẩm sinh khi ngủ có mơ không?

10. Tại sao người ta chia 1 ngày ra làm 24h mà không chia ra làm 10h?

11. Tại sao người ta vẫn cố bấm cật lực vào điều khiển từ xa khi đã biết rằng điều khiển đã hết pin?

12. Tại sao người ta vẫn tiệt trùng kim tiêm để tiêm chất độc khi hành quyết các tù nhân bị án tử hình?

13. Tại sao Tarzan không có râu?

14. Tốc độ của ánh sáng là 300k km/1s vậy tốc độ bóng tối là bao nhiêu?

15. Nếu hôm nay trời lạnh 0 độ C, ngày mai trời lạnh gấp 2 lần thì ngày mai trời sẽ lạnh đến mức nào?

16. Tại sao trong ngăn tủ lạnh có bóng đèn mà ngăn tủ đá lại không có?

17. Khi đợi thang máy thường ai cũng ấn nút gọi thang máy mấy lần, ấn đi ấn lại như vậy có làm thang máy tới nhanh hơn không?

18. Tại sao ngành điện biết mất điện thiệt hại kinh tế và ảnh hưởng xã hội rất lớn mà vẫn cứ cắt bụp?

19. Tại sao có kỷ niệm 1000 năm Thăng Long Hà Nội mà không có kỷ niệm 4000 Năm lịch sử Việt Nam?

20. Lịch sử VN ai cũng đã học sao không ai biết vua Hùng có Họ là gì?

21. Tại sao ai cũng biết hút thuốc rất có hại cho sức khỏe mà vẫn cho sản xuất và bán thuốc lá?

22. Tại sao rất nhiều người có quan điểm là có thế giới tâm linh (Cõi âm…) nhưng lại không cho phép thành lập các trung tâm nghiên cứu về nó và công bố các nghiên cứu đó?

23. Tại sao 1000 năm trước ta đã lập văn bia ghi danh các tiến sĩ tại Quốc Tử giám nhưng nay lại bỏ?

24. Tại sao bạn rất bận rộn mà vẫn ngồi đọc mấy câu hỏi củ chuối này làm gì?
thế này ai mà trả lời được.

1
30 tháng 10 2021

co chu toi khoc

Tại một vương quốc nọ, người ta chỉ làm tiền mệnh giá 3 lumione và 8 lumione.Một hôm có một gia đình du khách nước ngoài đến một cửa tiệm của vương quốc này. Trên cửa tiệm có treo bảng: "OVER 13".Khách hỏi chủ tiệm: "OVER 13 nghĩa là trên 13 tuổi mới vào hả? Thế thì đứa bé này mới 5 tuổi không vào được rồi."Chủ tiệm bảo: "À không, không phải thưa quý khách."Khách hỏi: "Vậy OVER 13...
Đọc tiếp

Tại một vương quốc nọ, người ta chỉ làm tiền mệnh giá 3 lumione và 8 lumione.

Một hôm có một gia đình du khách nước ngoài đến một cửa tiệm của vương quốc này. Trên cửa tiệm có treo bảng: "OVER 13".

Khách hỏi chủ tiệm: "OVER 13 nghĩa là trên 13 tuổi mới vào hả? Thế thì đứa bé này mới 5 tuổi không vào được rồi."

Chủ tiệm bảo: "À không, không phải thưa quý khách."

Khách hỏi: "Vậy OVER 13 là trên 1 mét 3 hả? Đứa bé này cũng mới 1 mét 1 thôi."

Chủ tiệm: "Không, sai rồi quý khách."

Khách hỏi: "Vậy OVER 13 là gì?"

Chủ tiệm: "À, tất cả món hàng ở đây đều có giá trên 13 lumione."

Khách: "Tại sao phải trên 13?"

Chủ: "Tiệm chúng tôi vốn không thích thối tiền. Mọi giá trị trên 13 lumione đều có thể trả vừa đủ bởi tiền 3 lumione và 8 lumione."

Khách: "Thật hả?"

Chủ: "Thật chứ sao không!"

Bạn hãy chứng minh rằng mọi món hàng trên 13 lumione đều có thể trả VỪA ĐỦ bởi tiền 3 và 8 lumione. Không giới hạn số đồng tiền bạn có.

Gợi ý: Nếu bạn biết rằng có thể trả 31 lumione bằng 5 đồng 3 và 2 đồng 8 thì bạn sẽ trả 34 lumione bằng cách nào là hợp lí nhất?

4
22 tháng 12 2016

anh Đạt tìn bài toán này đâu mà hóc búa vậy

22 tháng 12 2016

Chả biết trình bày sao. Giờ bạn chứng minh 2 cái

Thứ nhất: Những số lớn hơn 14 có thể biểu diễn thành tổng của 2 số mà trong đó 1 số chia hết cho 3, 1 số chia hết cho 8

Thứ 2: chứng minh 2 số đó đều dương

Mình giúp bạn chứng minh cái thứ nhất nhé. Vì cái thứ 2 mình toàn dùng lý luận để chứng minh nên mình không thích

Ta có

\(14=2.3+8\)

Giả sử điều giả thiết là đúng đến 14 + k (k\(\ge0\))

Có nghĩa: \(14+k=3a+8b\)(a, b nguyên)

Ta chứng minh giả thuyết đúng đến k + 1

Ta có

\(14+k+1=3a+8b+1\)

\(=3\left(a+3\right)+8\left(b-1\right)+1-9+8\)

\(=3\left(a+3\right)+8\left(b-1\right)\)

Vậy giả thuyết thứ nhất là đúng

Đề bài toán-  Có 5 ngôi nhà, mỗi ngôi nhà được sơn một màu khác nhau.-  Chủ nhân của mỗi ngôi nhà lại mang quốc tịch khác nhau.-  5 chủ nhân của ngôi nhà – mỗi người chỉ thích một loại nước uống, hút một hãng thuốc lá và nuôi một con vật nuôi riêng.-  Không vị chủ nhân nào thích cùng một loại nước uống, hút cùng một hãng thuốc lá và có cùng một loại vật nuôi.Gợi ý:1. Người...
Đọc tiếp

Đề bài toán

-  Có 5 ngôi nhà, mỗi ngôi nhà được sơn một màu khác nhau.

-  Chủ nhân của mỗi ngôi nhà lại mang quốc tịch khác nhau.

-  5 chủ nhân của ngôi nhà – mỗi người chỉ thích một loại nước uống, hút một hãng thuốc lá và nuôi một con vật nuôi riêng.

-  Không vị chủ nhân nào thích cùng một loại nước uống, hút cùng một hãng thuốc lá và có cùng một loại vật nuôi.

Gợi ý:

1. Người Anh sống trong ngôi nhà màu đỏ.

2. Người Thụy Điển nuôi chó.

3. Người Đan Mạch thích uống trà.

4. Ngôi nhà màu xanh lá nằm bên trái ngôi nhà màu trắng.

5. Chủ nhà ngôi nhà xanh lá thích uống cà phê.

6. Người hút thuốc lá Pall Mall nuôi chim.

7. Chủ nhà màu vàng hút thuốc lá Dunhill.

8. Người sống trong ngôi nhà chính giữa phố thích uống sữa.

9. Người Na Uy sống trong ngôi nhà đầu tiên.

10. Người hút thuốc lá Blends sống cạnh người nuôi mèo.

11. Người nuôi ngựa sống cạnh người hút thuốc lá Dunhill.

12. Người hút thuốc Blue Master thích uống bia.

13. Người Đức hút thuốc lá Prince.

14. Người Na Uy sống cạnh ngôi nhà màu xanh lơ.

15. Người hút thuốc lá Blends có người hàng xóm thích uống nước.

Câu hỏi đưa ra: Vậy ai là người nuôi cá?

 Theo bạn, ai mới là người nuôi cá?

Bạn chỉ có thể chọn một mục. 

Người Đức

Người Thụy Điển

Người Anh

Người Đan Mạch

Người Na Uy

5
17 tháng 3 2016

người Đức nuôi cá

17 tháng 3 2016

loạn óc mất

Tưởng tượng bạn là một điệp viên như James Bond, đang đảm trách sứ mệnh nguy hiểm được quốc gia giao phó.Nhiệm vụ đặt ra cho bạn là phải xâm nhập được vào trụ sở của một tổ chức tội ác, tìm ra bảng điều khiển bí mật để có thể vô hiệu hóa cỗ máy phát tia hủy diệt. Tuy nhiên, thông tin bạn được cung cấp lại như một câu đố, chỉ với vài dòng như sau: Bạn có đủ thông...
Đọc tiếp

Tưởng tượng bạn là một điệp viên như James Bond, đang đảm trách sứ mệnh nguy hiểm được quốc gia giao phó.

Nhiệm vụ đặt ra cho bạn là phải xâm nhập được vào trụ sở của một tổ chức tội ác, tìm ra bảng điều khiển bí mật để có thể vô hiệu hóa cỗ máy phát tia hủy diệt. Tuy nhiên, thông tin bạn được cung cấp lại như một câu đố, chỉ với vài dòng như sau:

 


Bạn có đủ thông minh, can đảm để nhận nhiệm vụ này không?

"Trụ sở của chúng là 1 kim tự tháp khổng lồ, có 1 phòng tại tầng cao nhất, 2 phòng tại tầng tiếp theo và cứ thế tăng dần. Bảng điều khiển được giấu đằng sau 1 bức tranh tại tầng cao nhất có thể. Tầng này phải thỏa mãn các điều kiện:

  1. Mỗi phòng có 3 cửa thông với các phòng khác trên tầng đó.
  2. Nhưng riêng phòng điều khiển chỉ có đúng 1 cửa.
  3. Căn phòng không có tiền sảnh, cũng chẳng có cầu thang".

Tình thế vô cùng khó khăn, trong tay bạn không hề có bản đồ các tầng, còn thời gian chỉ đủ để kiểm tra được 1 tầng trước khi hệ thống báo động kích hoạt.

0
Giả thuyết PoincaréHenri Poincare (1854-1912), là nhà vật lý học và toán học người Pháp,một trong những nhà toán học lớn nhất thế kỷ 19. Giả thuyết Poincarédo ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20Lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ:...
Đọc tiếp
  1. Giả thuyết Poincaré
    Henri Poincare (1854-1912), là nhà vật lý học và toán học người Pháp,
    một trong những nhà toán học lớn nhất thế kỷ 19. Giả thuyết Poincarédo ông đưa ra năm 1904 là một trong những thách thức lớn nhất của toán học thế kỷ 20

    Lấy một quả bóng (hoặc một vật hình cầu), vẽ trên đó một đường cong khép kín không có điểm cắt nhau, sau đó cắt quả bóng theo đường vừa vẽ: bạn sẽ nhận được hai mảnh bóng vỡ. Làm lại như vậy với một cái phao (hay một vật hình xuyến): lần này bạn không được hai mảnh phao vỡ mà chỉ được có một.
    Trong hình học topo, người ta gọi quả bóng đối lập với cái phao, là một về mặt liên thông đơn giản. Một điều rất dễ chứng minh là trong không gian 3 chiều, mọi bề mặt liên thông đơn giản hữu hạn và không có biên đều là bề mặt của một vật hình cầu.
    Vào năm 1904, nhà toán học Pháp Henri Poincaré đặt ra câu hỏi: Liệu tính chất này của các vật hình cầu có còn đúng trong không gian bốn chiều. Điều kỳ lạ là các nhà hình học topo đã chứng minh được rằng điều này đúng trong những không gian lớn hơn hoặc bằng 5 chiều, nhưng chưa ai chứng minh được tính chất này vẫn đúng trong không gian bốn chiều.
  2. Vấn đề P chống lại NP
    Với quyển từ điển trong tay, liệu bạn thấy tra nghĩa của từ “thằn lắn” dễ hơn, hay tìm một từ phổ thông để diễn tả “loài bò sát có bốn chân, da có vảy ánh kim, thường ở bờ bụi” dễ hơn? Câu trả lời hầu như chắc chắn là tra nghĩa thì dễ hơn tìm từ.
    Những các nhà toán học lại không chắc chắn như thế. Nhà toán học Canada Stephen Cook là người đầu tiên, vào năm 1971, đặt ra câu hỏi này một cách “toán học”. Sử dụng ngôn ngữ lôgic của tin học, ông đã định nghĩa một cách chính xác tập hợp những vấn đề mà người ta thẩm tra kết quả dễ hơn (gọi là tập hợp P), và tập hợp những vấn đề mà người ta dễ tìm ra hơn (gọi là tập hợp NP). Liệu hai tập hợp này có trùng nhau không? Các nhà lôgic học khẳng định P # NP. Như mọi người, họ tin rằng có những vấn đề rất khó tìm ra lời giải, nhưng lại dễ thẩm tra kết quả. Nó giống như việc tìm ra số chia của 13717421 là việc rất phức tạp, nhưng rất dễ kiểm tra rằng 3607 x 3808 = 13717421. Đó chính là nền tảng của phần lớn các loại mật mã: rất khó giải mã, nhưng lại dễ kiểm tra mã có đúng không. Tuy nhiên, cũng lại chưa có ai chứng minh được điều đó.
    “Nếu P=NP, mọi giả thuyết của chúng ta đến nay là sai” – Stephen Cook báo trước. “Một mặt, điều này sẽ giải quyết được rất nhiều vấn đề tin học ứng dụng trong công nghiệp; nhưng mặt khác lại sẽ phá hủy sự bảo mật của toàn bộ các giao dịch tài chính thực hiện qua Internet”. Mọi ngân hàng đều hoảng sợ trước vấn đề lôgic nhỏ bé và cơ bản này!
  3. Các phương trình của Yang-Mills
    Các nhà toán học luôn chậm chân hơn các nhà vật lý. Nếu như từ lâu, các nhà vật lý đã sử dụng các phương trình của Yang-Mills trong các máy gia tốc hạt trên toàn thế giới, thì các ông bạn toán học của họ vẫn không thể xác định chính xác số nghiệm của các phương trình này.
    Được xác lập vào những năm 50 bởi các nhà vật lý Mỹ Chen Nin Yang và Robert Mills, các phương trình này đã biểu diễn mối quan hệ mật thiết giữa vật lý về hạt cơ bản với hình học của các không gian sợi. Nó cũng cho thấy sự thống nhất của hình học với phần trung tâm của thể giới lượng tử, gồm tương tác tác yếu, mạnh và tương tác điện từ. Nhưng hiện nay, mới chỉ có các nhà vật lý sử dụng chúng…
  4. Giả thuyết Hodge
    Euclide sẽ không thể hiểu được gì về hình học hiện đại. Trong thế kỷ XX, các đường thẳng và đường tròn đã bị thay thế bởi các khái niệm đại số, khái quát và hiệu quả hơn. Khoa học của các hình khối và không gian đang dần dần đi tới hình học của “tính đồng đẳng”. Chúng ta đã có những tiến bộ đáng kinh ngạc trong việc phân loại các thực thể toán học, nhưng việc mở rộng các khái niệm đã dẫn đến hậu quả là bản chất hình học dần dần biến mất trong toán học. Vào năm 1950, nhà toán học người Anh William Hodge cho rằng trong một số dạng không gian, các thành phần của tính đồng đẳng sẽ tìm lại bản chất hình học của chúng…
  5. Giả thuyết Riemann
    2, 3, 5, 7, …, 1999, …, những số nguyên tố, tức những số chỉ có thể chia hết cho 1 và chính nó, giữ vai trò trung tâm trong số học. Dù sự phân chia các số này dường như không theo một quy tắc nào, nhưng nó liên kết chặt chẽ với một hàm số do thiên tài Thụy Sĩ Leonard Euler đưa ra vào thế kỷ XVIII. Đến năm 1850, Bernard Riemann đưa ra ý tưởng các giá trị không phù hợp với hàm số Euler được sắp xếp theo thứ tự. Giả thuyết của nhà toán học người Đức này chính là một trong 23 vấn đề mà Hilbert đã đưa ra cách đây 100 năm. Giả thuyết trên đã được rất nhiều nhà toán học lao vào giải quyết từ 150 năm nay. Họ đã kiểm tra tính đúng đắn của nó trong 1.500.000.000 giá trị đầu tiên, nhưng … vẫn không sao chứng minh được. “Đối với nhiều nhà toán học, đây là vấn đề quan trọng nhất của toán học cơ bản” – Enrico Bombieri, giáo sư trường Đại học Princeton, cho biết. Và theoDavid Hilbert, đây cũng là một vấn đề quan trọng đặt ra cho nhân loại. Bernhard Riemann (1826-1866) là nhà toán học Đức.
    Giả thuyết Riemann do ông đưa ra năm 1850 là một bài toán có vai trò cực kỳ quan trọng đến cả lý thuyết số lẫn toán học hiện đại.
  6. Các phương trình của Navier-Stokes
    Chúng mô tả hình dạng của sóng, xoáy lốc không khí, chuyển động của khí quyển và cả hình thái của các thiên hà trong thời điểm nguyên thủy của vũ trụ. Chúng được Henri Navier và George Stokes đưa ra cách đây 150 năm. Chúng chỉ là sự áp dụng các định luật về chuyển động của Newton vào chất lỏng và chất khí. Tuy nhiên, những phương trình của Navier-Stokes đến nay vẫn là một điều bí ẩn của toán học: người ta vẫn chưa thể giải hay xác định chính xác số nghiệm của phương trình này. “Thậm chí người ta không thể biết là phương trình này có nghiệm hay không” – nhà toán học người Mỹ Charles Fefferman nhấn mạnh – “Điều đó cho thấy hiểu biết của chúng ta về các phương trình này còn hết sức ít ỏi”.
  7. Giả thuyết của Birch và Swinnerton-Dyer
    Những số nguyên nào là nghiệm của phương trình x^2 + y^2 = z^2 ? có những nghiệm hiển nhiên, như 3^2 + 4^2 = 5^2. Và cách đây hơn 2300 năm, Euclide đã chứng minh rằng phương trình này có vô số nghiệm. hiển nhiên vấn đề sẽ không đơn giản như thế nếu các hệ số và số mũ của phương trình này phức tạp hơn… Người ta cũng biết từ 30 năm nay rằng không có phương pháp chung nào cho phép tìm ra số các nghiệm nguyên của các phương trình dạng này. Tuy nhiên, đối với nhóm phương trình quan trọng nhất có đồ thị là các đường cong êlip loại 1, các nhà toán học người Anh Bryan Birch và Peter Swinnerton-Dyer từ đầu những năm 60 đã đưa ra giả thuyết là số nghiệm của phương trình phụ thuộc vào một hàm số f: nếu hàm số f triệt tiêu tại giá trị bằng 1 (nghĩa là nếu f(1)= 0), phương trình có vô số nghiệm. nếu không, số nghiệm là hữu hạn.
    Giả thuyết nói như thế, các nhà toán học cũng nghĩ vậy, nhưng đến giờ chưa ai chứng minh được…

    Người ta thấy vắng bóng ngành Giải tích hàm (Functional analysí) vốn được coi là lãnh vực vương giả của nghiên cứu toán học. Lý do cũng đơn giản : những bài toán quan trọng nhất của Giải tích hàm vừa mới được giải quyết xong, và người ta đang đợi để tìm được những bài toán mới. Một nhận xét nữa : 7 bài toán đặt ra cho thế kỉ 21, mà không phải bài nào cũng phát sinh từ thế kỉ 20. Bài toán P-NP (do Stephen Cook nêu ra năm 1971) cố nhiên là bài toán mang dấu ấn thế kỉ 20 (lôgic và tin học), nhưng bài toán số 4 là giả thuyết Riemann đã đưa ra từ thế kỉ 19. Và là một trong 3 bài toán Hilbert chưa được giải đáp !
    Một giai thoại vui: Vài ngày trước khi 7 bài toán 1 triệu đôla được công bố, nhà toán học Nhật Bản Matsumoto (sống và làm việc ở Paris) tuyên bố mình đã chứng minh được giả thuyết Riemann. Khổ một nỗi, đây là lần thứ 3 ông tuyên bố như vậy. Và cho đến hôm nay, vẫn chưa biết Matsumoto có phải là nhà toán học triệu phú đầu tiên của thế kỉ 21 hay chăng..
9
17 tháng 3 2016

đền tiền thuốc mắt đi ! đọc xong hoa hít mắt rùi

17 tháng 3 2016

hay quá, h em rồi em h lại cho