Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Mức cường độ âm là:
\(L=10\cdot log\left(\dfrac{10^{-7}}{10^{-12}}\right)=10\cdot log\left(10^5\right)=50\left(dB\right)\)
b: Mức cường độ âm khi giao thông đông đúc là:
\(L=10\cdot log\left(\dfrac{10^{-3}}{10^{-12}}\right)=90\left(dB\right)\)
a: Mức cường độ âm là:
\(L=10\cdot log\left(\dfrac{l}{l0}\right)=10\cdot log\left(\dfrac{10^{-12}}{10^{-12}}\right)=20\left(dB\right)\)
b;
Để âm thanh không gây hại cho tai thì âm thanh cần phải có cường độ âm không vượt quá:
\(L=100000\cdot10^{-10}=10^{-5}\left(\dfrac{W}{m^2}\right)\)
Cường độ âm cần phải không vượt quá là:
\(10\cdot log\left(\dfrac{10^{-5}}{10^{-12}}\right)=70\left(dB\right)\)
a) Mức cường độ âm của tiếng thì thầm là:
\(L=10log\dfrac{10^{-10}}{10^{-12}}=20\left(dB\right)\)
b) Để âm thanh không gây hại cho tai khi nghe thời gian dài thì cường độ âm là:
\(I=100000.10^{-10}=10^{-5}\left(W/m^2\right)\)
Mức cường độ âm giới hạn đó là:
\(L=10log\dfrac{10^{-5}}{10^{-12}}=70\left(dB\right)\)
Mức cường độ âm được tính theo công thức: \(L=log\dfrac{I}{I_0}\left(B\right)\)
Giới hạn tai người nghe được là:
\(\left\{{}\begin{matrix}L=log\dfrac{10^{-12}}{10^{-12}}=0\left(B\right)\\L=log\dfrac{10}{10^{-12}}=13\left(B\right)\end{matrix}\right.\)
Vậy tai người nghe được mức cường độ âm từ 0 - 13B
a, Vì cường độ ánh sáng giảm dần theo độ sâu nên hàm số \(I=I_0\cdot a^d\) nghịch biến.
Vậy 0 < a < 1.
b, Ta có: \(I=I_0\cdot a^d\Rightarrow0,95I_0=I_0\cdot a^1\Leftrightarrow a=0,95\)
c, Ta có: \(I=I_0\cdot a^d=I_0\cdot0,95^{20}\approx0,36I_0\)
Vậy tại độ sâu 20m, cường độ ánh sáng bằng 36% so với \(I_0\)
a) Số cá thể vi khuẩn ban đầu mẻ có là:
\(P\left( 0 \right) = {50.10^{k.0}} = {50.10^0} = 50\) (cá thể)
b) Với \(t = 1,P\left( t \right) = 100\) ta có:
\(P\left( 1 \right) = {50.10^{k.1}} \Leftrightarrow 100 = {50.10^k} \Leftrightarrow {10^k} = 2 \Leftrightarrow k = \log 2 \approx 0,3\)
c) Thời gian để số lượng cá thể vi khuẩn đạt đến 50000 là:
\(50000 = {50.10^{0,3t}} \Leftrightarrow {10^{0,3t}} = 1000 \Leftrightarrow 0,3t = \log 1000 \Leftrightarrow 0,3t = 3 \Leftrightarrow t = 10\) (giờ)
\(pH = - \log x = {\log _{{{10}^{ - 1}}}}x = {\log _{\frac{1}{{10}}}}x\)
Do \(0 < \frac{1}{{10}} < 1\) nên hàm số \(pH = {\log _{\frac{1}{{10}}}}x\) nghịch biến trên \(\left( {0; + \infty } \right)\).
Ta có:
\(\begin{array}{l}pH = 7,3 \Leftrightarrow 7,3 = {\log _{\frac{1}{{10}}}}x \Leftrightarrow x = {\left( {\frac{1}{{10}}} \right)^{7,3}} \approx 5,{01.10^{ - 8}}\\pH = 7,45 \Leftrightarrow 7,45 = {\log _{\frac{1}{{10}}}}x \Leftrightarrow x = {\left( {\frac{1}{{10}}} \right)^{7,45}} \approx 3,{55.10^{ - 8}}\end{array}\)
Vì hàm số nghịch biến trên \(\left( {0; + \infty } \right)\) nên nồng độ H+ trong máu nhận giá trị trong miền từ \(3,{55.10^{ - 8}}\) đến \(5,{01.10^{ - 8}}\).
\(a,pH_A=1,9\Leftrightarrow-log\left[H^+\right]=1,9\Leftrightarrow H^+=10^{-1,9}\)
Vậy độ acid của dung dịch A là \(10^{-1,9}mol/L\)
\(pH_B=2,5\Leftrightarrow-log\left[H^+\right]=2,5\Leftrightarrow H^+=10^{-2,5}\)
Vậy độ acid của dung dịch B là \(10^{-2,5}mol/L\)
Ta có: \(\dfrac{H^+_A}{H_B^+}=\dfrac{10^{-1,9}}{10^{-2,5}}\approx398\)
Vậy độ acid của dung dịch A cao hơn độ acid của dung dịch B 3,98 lần.
b, Ta có:
\(6,5< pH< 6,7\\ \Leftrightarrow6,5< -log\left[H^+\right]< 6,7\\ \Leftrightarrow-6,7< log\left[H^+\right]< -6,5\\ \Leftrightarrow10^{-6,7}< H^+< 10^{-6,5}\)
Vậy nước chảy từ vòi nước có độ acid từ \(10^{-6,7}mol/L\) đến \(10^{-6,5}mol/L\)
Như vậy, nước đó có độ acid cao hơn nước cất.
a: Cường độ trung bình là:
\(I\left(t\right)=\dfrac{Q\left(t\right)-Q\left(t0\right)}{t-t0}\)
b: Cho biết cường độ trung bình khi t chạy tới t0 thì ngày càng được thể hiện chính xác hơn, rõ ràng hơn.
a, Ta có:
\(L=50\Leftrightarrow10log\left(\dfrac{I}{I_0}\right)=50\\ \Leftrightarrow\dfrac{I}{I_0}=10^5\\ \Leftrightarrow I=I_0\cdot10^5=10^{-12}\cdot10^5=10^{-7}\left(W/m^2\right)\)
Vậy cường độ âm của giọng nói giáo viên là \(I=10^{-7}\left(W/m^2\right)\)
b, Ta có:
\(75\le L\le90\Leftrightarrow75\le10log\left(\dfrac{I}{I_0}\right)\le90\Leftrightarrow10^{7,5}\le\dfrac{I}{10^{-12}}\le10^9\\ \Leftrightarrow10^{-4,5}\le I\le10^{-3}\\ \Leftrightarrow3,16\cdot10^{-5}\le I\le10^{-3}\)
Vậy cường độ âm trong nhà xưởng này thay đổi trong khoảng \(3,16\cdot10^{-5}\left(W/m^2\right)\) đến \(10^{-3}\left(W/m^2\right)\)