K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2016

\(\Leftrightarrow4xy-2y^2+xy-2x^2=-2\)

\(\Leftrightarrow2y\left(2x-y\right)-x\left(2x-y\right)=-2\)

\(\Leftrightarrow\left(2x-y\right)\left(2y-x\right)=-2\)

Ta có -2=1.(-2)=2.(-1)

Lập bạng xét giá trị ( mục đích là cho mau ko ghi dài dòng)

2x-y1-22-1
2y-x-21-12
x0-110
y-1001

Vậy các cặp số nguyên (x;y)=(0;1),(-1;0),(1;0),(0;1)

Bạn chọn mình t i c k cho mình 1 cái nha cảm ơn

3 tháng 7 2016

Chờ xíu làm cho

16 tháng 5 2020

Ta có:
2x^2+3xy-2y^2=7
=> 2x^2-xy+4xy-2y^2=7
=> x(2x-y)+2y(2x-y)=7
=> (2x-y)(x+2y)=7
Ta có: 2x-y, x+2y là nghiệm của 7
Nếu 2x-y=7, x+2y=1
=> 2(2x-y)+x+2y=15
=> 5x=15

=> x=3, y=-1 (TM)
Tương tự:
Nếu 2x-y= 1,x+2y= 7 => x=1,8 , y=2,6 (loại)
Nếu 2x-y=-1,x+2y=-7 => x=-1,8 , y=-2,6(loại)
Nếu 2x-y=-7, x+2y=-1=> x=-3, y=1(loại)
Vậy (x;y) là (3;-1);(-3;1)

10 tháng 11 2019

1. x+y=xy

=> x-xy+y=0

=> x(1-y)+y=0

=> x(1-y)+y -1 =-1

=> x(1-y)- (1-y) =-1=> (1-y)(x-1)=-1

*    1-y=-1 => y=2

      x-1=1=> x=2

*     1-y =1 => y=0

       x-1=-1 => x=0

2 tháng 2 2018

Lời giải:

Ta đưa về bài toán tìm nghiệm nguyên dương.

TH1: x,y∈Z+x,y∈Z+

PT tương đương: (x−y)(4xy−2)=(xy)3−1≥0⇒x≥y(x−y)(4xy−2)=(xy)3−1≥0⇒x≥y

Nếu x=yx=y thì hiển nhiên có xy=1⇒x=y=1xy=1⇒x=y=1.

Xét x>yx>y có 4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)(1)

Vì 2(x−y)−1≠02(x−y)−1≠0 nên suy ra để có (1)(1) thì 2(x−y)−1≥xy⇔(y−2)(x+2)≤−5<02(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0

⇒y−2<0→y=1⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1x=y=1 (loại vì đang xét x>yx>y)

TH2: x,yx,y đều âm. Ta thay x=−a,y=−bx=−a,y=−b với a,ba,b nguyên dương.

Phương trình trở thành 2a(2b2+1)−2b(2a2+1)+1=(ab)32a(2b2+1)−2b(2a2+1)+1=(ab)3

Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1a=b=1, tức là x=y=−1x=y=−1

TH3: x>0,y<0x>0,y<0. Đặt x=a,y=−bx=a,y=−b (a,ba,b nguyên dương)

PT tương đương: 2b(2a2+1)+2a(2b2+1)−1=(ab)32b(2a2+1)+2a(2b2+1)−1=(ab)3

⇒2(a+b)−1⋮ab⇒2(a+b)−1⋮ab. Vì 2(a+b)−1≠02(a+b)−1≠0 nên 2(a+b)−1≥ab⇒(a−2)(b−2)≤32(a+b)−1≥ab⇒(a−2)(b−2)≤3

Với a,b≥1a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn

TH4: x<0,y>0x<0,y>0. Đặt x=−a,y=bx=−a,y=b (a,ba,b nguyên dương)

PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=02a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)

Vậy (x,y)=(1;1)(x,y)=(1;1) hoặc (x,y)=(−1;−1)

2 tháng 2 2018

Lời giải:

Ta đưa về bài toán tìm nghiệm nguyên dương.

TH1: x,yZ+x,y∈Z+

PT tương đương: (xy)(4xy2)=(xy)310xy(x−y)(4xy−2)=(xy)3−1≥0⇒x≥y

Nếu x=yx=y thì hiển nhiên có xy=1x=y=1xy=1⇒x=y=1.

Xét x>yx>y có 4xy(xy)2(xy)+1=(xy)3xy2(xy)1xy4xy(x−y)−2(x−y)+1=(xy)3⋮xy⇒2(x−y)−1⋮xy(1)(1)

Vì 2(xy)102(x−y)−1≠0 nên suy ra để có (1)(1) thì 2(xy)1xy(y2)(x+2)5<02(x−y)−1≥xy⇔(y−2)(x+2)≤−5<0

y2<0y=1⇒y−2<0→y=1. Thay vào PT ban đầu thu được x=y=1x=y=1 (loại vì đang xét x>yx>y)

TH2: x,yx,y đều âm. Ta thay x=a,y=bx=−a,y=−b với a,ba,b nguyên dương.

Phương trình trở thành 2a(2b2+1)2b(2a2+1)+1=(ab)32a(2b2+1)−2b(2a2+1)+1=(ab)3

Đây là dạng PT tương tự TH1, ta cũng thu được a=b=1a=b=1, tức là x=y=1x=y=−1

TH3: x>0,y<0x>0,y<0. Đặt x=a,y=bx=a,y=−b (a,ba,b nguyên dương)

PT tương đương: 2b(2a2+1)+2a(2b2+1)1=(ab)32b(2a2+1)+2a(2b2+1)−1=(ab)3

2(a+b)1ab⇒2(a+b)−1⋮ab. Vì 2(a+b)102(a+b)−1≠0 nên 2(a+b)1ab(a2)(b2)32(a+b)−1≥ab⇒(a−2)(b−2)≤3

Với a,b1a,b≥1 dễ dàng suy ra không có bộ nghiệm nào thỏa mãn

TH4: x<0,y>0x<0,y>0. Đặt x=a,y=bx=−a,y=b (a,ba,b nguyên dương)

PT tương đương 2a(2b2+1)+2b(2a2+1)+1+(ab)3=02a(2b2+1)+2b(2a2+1)+1+(ab)3=0 (vô lý)

Vậy (x,y)=(1;1)(x,y)=(1;1) hoặc (x,y)=(1;1)

18 tháng 7 2015

tìm nghiệm phải đặt bt = 0

7 tháng 11 2020

3x2 + y2 + 2x - 2y = 1

\(\Leftrightarrow\)3x2 + y2 + 2x - 2y - 1 = 0

\(\Leftrightarrow\)2x( x+ 1 ) + ( x + 1 ) ( x - 1 ) - y( y - 1 ) = 0

\(\Leftrightarrow\)( x + 1 ) ( 3x + 1 ) - y( y - 1 ) = 0

\(\orbr{\begin{cases}\left(x+1\right)\left(3x+1\right)=0\\y\left(y-1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=-1\\x=-\frac{1}{3}\end{cases}}\\\hept{\begin{cases}y=0\\y=1\end{cases}}\end{cases}}\)

12 tháng 2 2020

We have equation \(x+y=xy\)

\(\Rightarrow xy-x-y=0\)

\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=1=\left(-1\right).\left(-1\right)=1.1\)

So equation has two value \(\left(2;2\right),\left(0;0\right)\)

12 tháng 2 2020

We have \(p\left(x+y\right)=xy\)

\(\Leftrightarrow xy-px-py=0\)

\(\Leftrightarrow xy-px-py+p^2=p^2\)

\(\Leftrightarrow x\left(y-p\right)-p\left(y-p\right)=p^2\)

\(\Leftrightarrow\left(x-p\right)\left(y-p\right)=p^2\)

But p is prime so \(Ư\left(p^2\right)=\left\{1;p;p^2\right\}\)

\(\Rightarrow\left(x-p\right)\left(y-p\right)=1.p^2=p.p=p^2.1=\left(-p\right).\left(-p\right)\)

\(=\left(-1\right).\left(-p^2\right)=\left(-p^2\right).\left(-1\right)\)

So equation has values \(S=\left(p+1;p^2+p\right);\left(2p;2p\right);\left(p^2+p;p+1\right);\left(0;0\right)\)

\(;\left(p-1;p-p^2\right);\left(p-p^2;p-1\right)\)