\(a^2\)=bc thì \(\dfrac{a+b}{a-b}\)=...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2018

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Leftrightarrow\left(a+b\right)\left(c-a\right)=\left(c+a\right)\left(a-b\right)\)

\(\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\)

\(\Leftrightarrow\left(ac-ac\right)+\left(bc+bc\right)=\left(a^2+a^2\right)+\left(-ab+ab\right)\)

\(\Leftrightarrow2bc=2a^2\)

\(\Leftrightarrow a^2=bc\left(đpcm\right)\)

Vậy \(a^2=bc\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\left(đpcm\right)\)

31 tháng 10 2017

Nếu \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Leftrightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\)

\(\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\)

\(\Leftrightarrow2a^2=2bc\)

\(\Leftrightarrow a^2=bc\)

Vậy \(a^2=bc\Leftrightarrow\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\) luôn luôn đúng.

Bài 2: 

Đặt a/b=c/d=k

=>a=bk; c=dk

a: \(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{k}{k+1}\)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{k}{k+1}\)

Do đó: \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b: \(\dfrac{7a^2+5ac}{7a^2-5ac}=\dfrac{7\cdot b^2k^2+5\cdot bk\cdot dk}{7\cdot b^2k^2-5\cdot bk\cdot dk}\)

\(=\dfrac{7b^2k^2+5bdk^2}{7b^2k^2-5bdk^2}=\dfrac{7b^2+5bd}{7b^2-5bd}\)(đpcm)

2 tháng 8 2017

1.

- Theo đề bài ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\left(a,b,c,d\ne0\right)\)

=> \(\dfrac{a}{c}=\dfrac{b}{d}\)

- Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{c}=\dfrac{b}{d}\) =\(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)

=> \(\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\)( đpcm).

2.

- Ta có:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

=> ( a+b ).(c-a) = (a-b).(c+a)

=> ac - a2 +bc-ba = ac +a2 -bc -ba

=> ac - a2 +bc-ba -(ac +a2 -bc -ba) =0

=> ac - a2 +bc-ba -ac -a2 +bc +ba = 0

=>ac - aa +bc-ba -ac -aa +bc +ba = 0

=> ( ac-ac) +( -aa-aa) +( bc+bc) + ( -ba+ba) =0

=> -2aa +2bc = 0

=> 2bc = 2aa

=> bc = aa

=> bc = a2

- Vậy nếu bc = a2 thì \(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)( đpcm).

9 tháng 11 2017

hehe

9 tháng 10 2017

2.

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(dpcm\right)\)

25 tháng 5 2017

a) Ta có: \(\dfrac{a}{b}\)\(\dfrac{c}{d}\)(b > 0, d > 0)

Nếu \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) (b > 0, d > 0) thì ad = bc.

=> Nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc.

Vậy nếu \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\) thì ad < bc.

25 tháng 5 2017

a) Ta có: \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

=> \(\dfrac{ad}{bd}\) < \(\dfrac{bc}{bd}\)

=> ad < bc

Vậy ad < bc

b) Ta có: ad < bc

=> \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

Vậy \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\)

6 tháng 6 2015

Ác Mộng sai rồi:

Ta có:\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\Leftrightarrow2a^2=2bc\Leftrightarrow a^2=bc\)

Vậy có thể đảo lại là đúng!!!!!

Chúc bạn học tốt ^_^

6 tháng 6 2015

\(a^2=bc\Leftrightarrow\frac{a}{b}=\frac{c}{a}\)

      Áp dụng tích chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b}=\frac{c}{a}=\frac{c-a}{a-b}=\frac{c+a}{a+b}\)

\(\Rightarrow\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

 Điều suy ngược lại không đúng!

13 tháng 11 2016

mk cũng đang cần giải bài đấy đây

 

5 tháng 9 2017

1. Ta có: \(\dfrac{a}{b}=\dfrac{ab}{cd},\dfrac{c}{d}=\dfrac{bc}{bd}\)

a) Mẫu chung bd > 0 ( do b > 0, d > 0 ) nên nếu \(\dfrac{ad}{bd}< \dfrac{bc}{bd}\) thì ad < bc

b) Ngược lại, Nếu ad < bc thì \(\dfrac{ad}{bd}< \dfrac{bc}{bd}.\Rightarrow\dfrac{a}{b}< \dfrac{c}{d}\)

Ta có thể viết: \(\dfrac{a}{b}< \dfrac{c}{d}\Leftrightarrow ad< bc\)

5 tháng 9 2017

2. a) Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\) ( 1 )

Thêm ab vào 2 vế của (1): \(ad+ab< bc+ab\)

\(a\left(b+d\right)< b\left(a+c\right)\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) ( 2 )

Thêm cd vào 2 vế của (1): \(ad+cd< bc+cd\)

\(d\left(a+c\right)< c\left(b+d\right)\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) ( 3 )

Từ (2) và (3) ta có: \(\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)

14 tháng 8 2017

Áp dụng tính chất dãy tỉ số bằng nhau :
a/x=b/y=c/z=a/x=2b/2y=3c/3z=a+2b-3c/x+2y-3z
=>4a/4x=5b/5y=6c/6z=4a-5b+6c/4x-5y+6z
=>a+2b-3c/x+2y-3z=4a-5b+6c/4x-5y+6z=a+2b-3c/4a-5b+6c=x+2y-3z/4x-5y+6z
Vậy ta có điều phải chứng minh
2/ Theo đề bài ta có:
\(^{^{ }a^2}\)=bc=>\(\dfrac{a}{b}\)=\(\dfrac{c}{a}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\dfrac{a}{b}\)=\(\dfrac{c}{a}\)=\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)=\(\dfrac{a+b}{c+a}\)(*)
=>\(\dfrac{a}{c}\)=\(\dfrac{b}{a}\)=\(\dfrac{a-b}{c-a}\)(**)
Từ (*) và (**) suy ra :
\(\dfrac{a+b}{c+a}\)=\(\dfrac{a-b}{c-a}\)=\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+a}{c-a}\)
Từ đó ta có điều phải chứng minh
b) Theo đề bài ta có:
\(\dfrac{a+b}{a-b}\)=\(\dfrac{c+a}{c-a}\)=>(a+b).(c-a)=(a-b).(c+a)
=>ac-a^2+bc-ab=ac+a^2-bc-ab
=>ac-ac+ab-ab-a^2-a^2=-bc-bc
=>-a^2-a^2= -bc-bc
=>-2a^2=-2bc
=>a^2=bc