Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Gọi pt đường thẳng BC là: \(\Delta:y=ax+b\)
Vì pt đi qua 2 điểm B và C nên ta thay lần lượt các điểm vào, ta được:
\(\left\{{}\begin{matrix}-2=a.3+b\\-4=a.6+b\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=-2\\6a+b=-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{2}{3}\\0\end{matrix}\right.\)
Vậy pt đường thẳng BC là: \(y=-\dfrac{2}{3}x\)
b. \(d\left(A,\Delta\right)=\dfrac{\left|-\dfrac{2}{3}.\left(-1\right)+\left(-1\right).7\right|}{\sqrt{\left(-\dfrac{2}{3}\right)^2+\left(-1\right)^2}}=\dfrac{19\sqrt{13}}{13}\)
c. \(BC=\sqrt{\left(6-3\right)^2+\left(-4+2\right)^2}=\sqrt{13}\)
\(\Rightarrow S_{ABC}=\dfrac{\sqrt{13}.\dfrac{19\sqrt{13}}{13}}{2}=\dfrac{19}{2}\)
Nhân phương trình (2) với 2 rồi cộng với phương trình (1) và nhân phương trình (2) với 3 rồi trừ đi phương trình (3), phương trình (2) giữ nguyên ta được:
Giải hệ phương trình trên ta được x = -1; y = 2; z = -2.
Vậy hệ phương trình có nghiệm (x; y; z) = (-1; 2; -2)
1. \(\sin^2x+\sin2x=3\cos^2x\Leftrightarrow\sin^2x+2\sin x\cos x-3\cos^2x=0\Leftrightarrow4\sin^2x+2\sin x\cos x-3=0\)
Vì \(\cos x=0\) không phải là nghiệm của phương trình, nên chia 2 vế pt cho \(\cos x\), ta đc:
\(4\tan^2x+2\tan x-\frac{3}{\cos^2x}=0\Leftrightarrow4\tan^2x+2\tan x-3\left(1+\tan^2x\right)=0\Leftrightarrow\tan^2x+2\tan x-3=0\)
Suy ra: \(\begin{matrix}\tan x=1\\\tan x=-3\end{matrix}\) suy ra x.
b) \(\Leftrightarrow\sqrt{2}\sin\left(x+\frac{\pi}{4}\right)=\sqrt{2}\sin2x\Leftrightarrow\sin\left(x+\frac{\pi}{4}\right)=\sin2x\Leftrightarrow\begin{cases}x+\frac{\pi}{4}=2x+k2\pi\\x+\frac{\pi}{4}=\pi-2x+k2\pi\end{cases}\)
\(\Leftrightarrow\begin{cases}x=\frac{\pi}{4}-k2\pi\\x=\frac{\pi}{4}+\frac{k2\pi}{3}\end{cases}\)
Vậy ....
- Phương trình sinx = a (1)
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π - arcsina + k2π, k ∈ Z.
- Phương trình sinx = a (1)
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn sinα = a.
Khi đó phương trình (1) có các nghiệm là
x = α + k2π, k ∈ Z
và x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
và x = π - arcsina + k2π, k ∈ Z.
Các trường hợp đặc biệt:
- Phương trình cosx = a (2)
♦ |a| > 1: phương trình (2) vô nghiệm.
♦ |a| ≤ 1: gọi α là một cung thỏa mãn cosα = a.
Khi đó phương trình (2) có các nghiệm là
x = α + k2π, k ∈ Z
và x = -α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện và cosα = a thì ta viết α = arccos a.
Khi đó các nghiệm của phương trình (2) là
x = arccosa + k2π, k ∈ Z
và x = -arccosa + k2π, k ∈ Z.
Các trường hợp đặc biệt:
- Phương trình tanx = a (3)
Điều kiện:
Nếu α thỏa mãn điều kiện và tanα = a thì ta viết α = arctan a.
Khi đó các nghiệm của phương trình (3) là
x = arctana + kπ,k ∈ Z
- Phương trình cotx = a (4)
Điều kiện: x ≠ kπ, k ∈ Z.
Nếu α thỏa mãn điều kiện và cotα = a thì ta viết α = arccot a.
Khi đó các nghiệm của phương trình (4) là
x = arccota + kπ, k ∈ Z