K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2017

CHUYÊN ĐỀ 4 - CÁC BÀI TOÁN VỀ SỰ CHIA HẾT CỦA SỐ NGUYÊN

A. MỤC TIÊU:

* Củng cố, khắc sâu kiến thức về các bài toán chia hết giữa các số, các đa thức

* HS tiếp tục thực hành thành thạo về các bài toán chứng minh chia hết, không chia hết, sốnguyên tố, số chính phương…

* Vận dụng thành thạo kỹ năng chứng minh về chia hết, không chia hết… vào các bài toán cụ thể

B.KIẾN THỨC VÀ CÁC BÀI TOÁN:

I. Dạng 1: Chứng minh quan hệ chia hết

1. Kiến thức:

* Để chứng minh A(n) chia hết cho một số m ta phân tích A(n) thành nhân tử có một nhân tử làm hoặc bội của m, nếu m là hợp số thì ta lại phân tích nó thành nhân tử có các đoi một nguyên tố cùng nhau, rồi chứng minh A(n) chia hết cho các số đó

* Chú ý:

+ Với k số nguyên liên tiếp bao giờ củng tồn tại một bội của k

+ Khi chứng minh A(n) chia hết cho m ta xét mọi trường hợp về số dư khi chia A(n) cho m

+ Với mọi số nguyên a, b và số tự nhiên n thì:

 

2. Bài tập:

2.1. Các bài toán

Bài 1: chứng minh rằng

a) 251 - 1 chia hết cho 7                      b) 270 + 370 chia hết cho 13

c) 1719 + 1917 chi hết cho 18              d) 3663 - 1 chia hết cho 7 nhưng không chia hết cho 37

e) 24n  -1 chia hết cho 15 với nÎ N

Giải

a) 251 - 1 = (23)17 - 1  23 - 1 = 7

b) 270 + 370 (22)35 + (32)35 = 435 + 935  4 + 9 = 13

c) 1719 + 1917 =  (1719 + 1) + (1917 - 1)

1719 + 1  17 + 1 = 18 và 1917 - 1  19 - 1 = 18 nên  (1719 + 1) + (1917 - 1)

hay 1719 + 1917  18

d) 3663 - 1  36 - 1 = 35  7

     3663 - 1 = (3663 + 1) - 2  chi cho 37 dư - 2

e) 2 4n - 1 = (24) n - 1  24 - 1 = 15

Bài 2: chứng minh rằng

a)  n5 - n chia hết cho 30 với n Î N    ;   

b) n4 -10n+ 9 chia hết cho 384 với mọi n lẻ nΠ Z

c) 10n  +18n -28 chia hết cho 27 với nÎ N  ; 

Giải:

a) n5 - n = n(n4 - 1) = n(n - 1)(n + 1)(n2 + 1) = (n - 1).n.(n + 1)(n2 + 1) chia hết cho 6 vì

(n - 1).n.(n+1) là tích của ba số tự nhiên liên tiếp nên chia hết cho 2 và 3 (*)

Mặt khác     n5 - n = n(n2 - 1)(n2 + 1) = n(n2 - 1).(n2 - 4 + 5) = n(n2 - 1).(n2 - 4 ) + 5n(n2 - 1)

                = (n - 2)(n - 1)n(n + 1)(n  + 2) + 5n(n2 - 1)

Vì (n - 2)(n - 1)n(n + 1)(n  + 2) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5

     5n(n2 - 1) chia hết cho 5

Suy ra (n - 2)(n - 1)n(n + 1)(n  + 2) + 5n(n2 - 1) chia hết cho 5 (**)

Từ (*) và (**) suy ra đpcm

b) Đặt A = n4 -10n+ 9 = (n4 -n2 ) - (9n2 - 9) =  (n2 - 1)(n2 - 9) = (n - 3)(n - 1)(n + 1)(n + 3)

Vì n lẻ nên đặt n = 2k + 1 (k  Z) thì

A = (2k - 2).2k.(2k + 2)(2k + 4) = 16(k - 1).k.(k + 1).(k + 2)  A chia hết cho 16 (1)

Và  (k - 1).k.(k + 1).(k + 2) là tích của 4 số nguyên liên tiếp nên A có chứa bội của 2, 3, 4 nên A là bội của 24 hay A chia hết cho 24 (2)

Từ (1) và (2) suy ra A chia hết cho 16. 24 = 384

c) 10 n  +18n -28 =  ( 10 n - 9n - 1) + (27n - 27)

+ Ta có: 27n - 27  27 (1)

+ 10 n - 9n - 1 = [( + 1) - 9n - 1] =   - 9n  = 9(  - n)  27 (2)

vì 9  9 và  - n  3 do  - n  là một số có tổng các chữ số chia hết cho 3

Từ (1) và (2) suy ra đpcm

3. Bài 3: Chứng minh rằng với mọi số nguyên a thì

a) a3 - a  chia hết cho 3

b) a7 - a  chia hết cho 7

Giải

a) a3 - a  = a(a2 - 1) =  (a - 1) a (a + 1)  là tích của ba số nguyên liên tiếp nên tồn tại một số là bội của 3 nên  (a - 1) a (a + 1) chia hết cho 3

b) ) a7 - a  = a(a6 - 1) = a(a2 - 1)(a2 + a + 1)(a2 -  a + 1)

Nếu a = 7k (k  Z) thì a chia hết cho 7

Nếu a = 7k + 1 (k Z)  thì a2 - 1 = 49k2 + 14k  chia hết cho 7

Nếu a = 7k + 2 (k Z)  thì a2 + a + 1 = 49k2 + 35k  + 7 chia hết cho 7

Nếu a = 7k + 3 (k Z)  thì a2 - a + 1 = 49k2 + 35k  + 7 chia hết cho 7

Trong trường hợp nào củng có một thừa số chia hết cho 7

Vậy: a7 - a  chia hết cho 7

Bài 4: Chứng minh rằng  A = 13 + 23 + 33 + ...+ 1003 chia hết cho B = 1 + 2 + 3 + ... + 100

Giải

Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) = 101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có:    A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B

Bài tập về nhà

Chứng minh rằng:

a) a5 – a chia hết cho 5

b) n3 + 6n2 + 8n chia hết cho 48 với mọi n chẵn

c) Cho a l à số nguyên tố lớn hơn 3. Cmr  a2 – 1 chia hết cho 24

d) Nếu a + b + c chia hết cho 6 thì a3 + b3 + c3 chia hết cho 6

e) 20092010  không chia hết cho 2010

f) n2 + 7n + 22  không chia hết cho 9

Dạng 2: Tìm số dư của một phép chia

Bài 1:

Tìm số dư khi chia 2100

a)cho 9,                     b) cho 25,               c) cho 125

Giải

a) Luỹ thừa của 2 sát với bội của 9 là 23 = 8 = 9 - 1

Ta có : 2100 = 2. (23)33 = 2.(9 - 1)33 = 2.[B(9) - 1] = B(9) - 2 = B(9) + 7

Vậy: 2100 chia cho 9 thì dư 7

b) Tương tự ta có:  2100 = (210)10 = 102410 =  [B(25) - 1]10  =  B(25) + 1

Vậy: 2100 chia chop 25 thì dư 1

c)Sử dụng công thức Niutơn:

2100 = (5 - 1)50 = (550  - 5. 549 + … + . 52 - 50 . 5 ) + 1

Không kể phần hệ số của khai triển Niutơn thì 48 số hạng đầu đã chứa thừa số 5 với số mũ lớn hơn hoặc bằng 3 nên đều chia hết cho 53  = 125, hai số hạng tiếp theo: . 52 -  50.5 cũng chia hết cho 125 , số hạng cuối cùng là 1

Vậy: 2100 = B(125) + 1 nên chia cho 125 thì dư 1

Bài 2:

Viết số 19951995 thành tổng của các số tự nhiên . Tổng các lập phương đó chia cho 6 thì dư bao nhiêu?

Giải

Đặt 19951995 = a = a1 + a2 + …+ an.  

Gọi  =  + a - a

           = (a1 3 - a1) + (a2 3 - a2) + …+ (an 3 - an) + a

Mỗi dấu ngoặc đều chia hết cho 6 vì mỗi dấu ngoặc là tích của ba số tự nhiên liên tiếp. Chỉ cần tìm số dư khi chia a cho 6

1995 là số lẻ chia hết cho 3, nên a củng là số lẻ chia hết cho 3, do đó chia cho 6 dư 3

Bài 3: Tìm ba chữ số tận cùng của 2100 viết trong hệ thập phân

giải

Tìm 3 chữ số tận cùng là tìm số dư của phép chia 2100 cho 1000

Trước hết ta tìm số dư của phép chia 2100 cho 125

Vận dụng bài 1 ta có 2100 = B(125) + 1 mà 2100 là số chẵn nên 3 chữ số tận cùng của nó chỉ có thể  là 126, 376, 626 hoặc 876

Hiển nhiên 2100 chia hết cho 8 vì 2100 = 1625 chi hết cho 8 nên ba chữ số tận cùng của nó chia hết cho 8

trong các số 126, 376, 626 hoặc 876 chỉ có 376 chia hết cho 8

Vậy: 2100 viết trong hệ thập phân có ba chữ số tận cùng là 376

Tổng quát: Nếu n là số chẵn không chia hết cho 5 thì 3 chữ số tận cùng của nó là 376

Bài 4: Tìm số dư trong phép chia các số sau cho 7

a) 2222 + 5555                           b)31993

c) 19921993 + 19941995              d)

Giải

a) ta có: 2222 + 5555 = (21 + 1)22 + (56 – 1)55 = (BS 7 +1)22 + (BS 7 – 1)55

= BS 7 + 1 + BS 7 - 1 = BS 7 nên  2222 + 5555  chia 7 dư 0

b) Luỹ thừa của 3 sát với bội của 7 là 33 = BS 7 – 1

Ta thấy 1993 =  BS 6 + 1 = 6k + 1, do đó:

 31993 = 3 6k + 1 = 3.(33)2k = 3(BS 7 – 1)2k = 3(BS 7 + 1) = BS 7 + 3

c) Ta thấy 1995 chia hết cho 7, do đó:

 19921993 + 19941995 = (BS 7 – 3)1993 + (BS 7 – 1)1995 =  BS 7 – 31993 + BS 7 – 1

Theo câu b ta có 31993 = BS 7 + 3 nên 

 19921993 + 19941995 = BS 7 – (BS 7 + 3) – 1 = BS 7 – 4 nên chia cho 7 thì dư 3

d)  = 32860 = 33k + 1 = 3.33k = 3(BS 7 – 1) =  BS 7 – 3 nên chia cho 7 thì dư 4

Bài tập về nhà  

 Tìm  số d ư khi:

a) 21994 cho 7

b) 31998 + 51998 cho 13

c) A =  13 + 23 + 33 + ...+ 993 chia cho B = 1 + 2 + 3 + ... + 99         

Dạng 3: Tìm điều kiện để xảy ra quan hệ chia hết

Bài 1: Tìm  n  Z để giá trị của biểu thức A = n3 + 2n2 - 3n + 2 chia hết cho giá trị của biểu thức B = n2 - n

Giải

Chia A cho B ta có: n3 + 2n2 - 3n + 2  = (n + 3)(n2 - n) + 2

Để A chia hết cho B thì 2 phải chia hết cho n2 - n = n(n - 1) do đó 2 chia hết cho n, ta có:

n

1

- 1

2

- 2

n - 1

0

- 2

1

- 3

n(n - 1)

0

2

2

6

loại

loại

Vậy: Để  giá trị của biểu thức A = n3 + 2n2 - 3n + 2 chia hết cho giá trị của biểu thức

B = n2 - n thì n

Bài 2:

a) Tìm n  N để n5 + 1 chia hết cho n3  + 1

b) Giải bài toán trên nếu n  Z

Giải

Ta có:  n5  + 1  n3 + 1  n2(n3 + 1) - (n2 - 1)  n3 + 1  (n + 1)(n - 1)  n3 + 1

  (n + 1)(n - 1)  (n + 1)(n2 - n + 1)  n - 1  n2 - n + 1  (Vì n + 1  0)

a) Nếu n = 1 thì  0 1

Nếu n > 1 thì n - 1 < n(n - 1) + 1 <  n2 - n + 1 nên không thể xẩy ra n - 1  n2 - n + 1 

Vậy giá trụ của n tìm được là n = 1

b) n - 1  n2 - n + 1  n(n - 1)  n2 - n + 1  (n2 - n + 1 ) - 1  n2 - n + 1

 1  n2 - n + 1. Có hai trường hợp xẩy ra:

+ n2 - n + 1 = 1  n(n - 1) = 0  (Tm đề bài)

+ n2 - n + 1 =  -1  n2 - n + 2 = 0 (Vô nghiệm)

Bài 3: Tìm số nguyên n sao cho:

a) n2 + 2n - 4  11                                       b) 2n3 + n2 + 7n + 1  2n - 1

c) n4 - 2n3 + 2n2 - 2n + 1  n4 - 1                d) n3 - n2 + 2n + 7  n2 + 1

Giải

a) Tách n2 + 2n - 4  thành tổng hai hạng tử trong đó có một hạng tử là B(11)

n2 + 2n - 4  11  (n2 - 2n - 15) + 11  11 (n - 3)(n + 5) + 11  11

 (n - 3)(n + 5)   11

b) 2n3 + n2 + 7n + 1 = (n2 + n + 4) (2n - 1) + 5

Để  2n3 + n2 + 7n + 1  2n - 1 thì 5  2n - 1 hay 2n - 1 là Ư(5) 

Vậy:  n   thì 2n3 + n2 + 7n + 1  2n - 1

c) n4 - 2n3 + 2n2 - 2n + 1  n4 - 1

Đặt A =  n4 - 2n3 + 2n2 - 2n + 1 = (n4 - n3) - (n3 - n2) + (n2 - n) - (n - 1)

= n3(n - 1) - n2(n - 1) + n(n - 1)  -  (n - 1) = (n - 1) (n3 - n2 + n - 1) = (n - 1)2(n2 + 1)

B = n4 - 1 = (n - 1)(n + 1)(n2 + 1)

A chia hết cho b nên n   1  A chia hết cho B  n - 1  n + 1  (n + 1) - 2  n + 1

  2  n + 1   

Vậy: n   thì  n4 - 2n3 + 2n2 - 2n + 1  n4 - 1 

d) Chia n3 - n2 + 2n + 7 cho n2 + 1 được thương là  n - 1, dư  n + 8

Để n3 - n2 + 2n + 7  n2 + 1 thì  n + 8  n2 + 1  (n + 8)(n - 8)  n2 + 1 65  n2 + 1

Lần lượt cho n2 + 1 bằng 1; 5; 13; 65 ta được n bằng 0; 2; 8

Thử lại ta có n = 0; n = 2; n = 8  (T/m)

Vậy: n3 - n2 + 2n + 7  n2 + 1 khi n = 0, n = 8

Bài tập về nhà:

Tìm số nguyên  n để:

a) n3 – 2 chia hết cho n – 2

b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1

c)5n – 2n chia hết cho 63

Dạng 4: Tồn tại hay không tồn tại sự chia hết

Bài 1: Tìm n  N sao cho 2n – 1 chia hết cho 7

Giải

Nếu n = 3k ( k  N) thì 2n – 1 = 23k – 1 = 8k  - 1 chia hết cho 7

Nếu n = 3k + 1 ( k  N) thì 2n – 1 = 23k + 1  – 1 = 2(23k – 1) + 1 = BS 7 + 1

Nếu n = 3k + 2 ( k  N) thì 2n – 1 = 23k + 2  – 1 = 4(23k – 1) + 3 = BS 7 + 3

V ậy: 2n – 1 chia hết cho 7 khi n = BS 3

Bài 2: Tìm n  N để:

a) 3n – 1 chia hết cho 8

b) A = 32n  + 3 + 24n + 1 chia hết cho 25

c) 5n – 2n chia hết cho 9

Giải

a) Khi n = 2k (k N) thì 3n – 1 = 32k – 1 = 9k – 1 chia hết cho 9 – 1 = 8

   Khi n = 2k + 1 (k N) thì 3n – 1 = 32k + 1  – 1 = 3. (9k – 1 ) + 2 = BS 8 + 2

Vậy : 3n – 1 chia hết cho 8 khi n = 2k (k N)

b) A = 32n  + 3 + 24n + 1 = 27 . 32n  + 2.24n =  (25 + 2) 32n  + 2.24n = 25. 32n  + 2.32n  + 2.24n

          = BS 25 + 2(9n  + 16n)

Nếu n = 2k +1(k N) thì 9n  + 16n = 92k + 1 + 162k + 1 chia hết cho 9 + 16 = 25

Nếu n = 2k  (k N) thì 9n có chữ số tận cùng bằng 1 , còn 16n có chữ số tận cùng bằng 6

suy ra 2((9n  + 16n) có chữ số tận cùng bằng 4 nên A không chia hết cho 5 nên không chia hết cho 25

c) Nếu n = 3k (k N) thì 5n – 2n =  53k – 23k chia hết cho 53 – 23 = 117 nên chia hết cho 9

    Nếu n = 3k + 1 thì 5n – 2n =  5.53k – 2.23k = 5(53k – 23k) + 3. 23k = BS 9 + 3. 8k

= BS 9 + 3(BS 9 – 1)k = BS 9 + BS 9 + 3

Tương tự:  nếu n = 3k + 2 thì 5n – 2n không chia hết cho 9

16 tháng 8 2017

bn gian lận thế

20 tháng 10 2023

\(n^3-2⋮n-2\)

=>\(n^3-8+6⋮n-2\)

=>\(6⋮n-2\)

=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)

AH
Akai Haruma
Giáo viên
21 tháng 10 2023

Lời giải:
$n^3-3n^2-3n-1=n(n^2+n-1)-4(n^2+n-1)+2n-5$

$=(n-4)(n^2+n-1)+2n-5$

Để $n^3-3n^2-3n-1\vdots n^2+n-1$ thì:

$2n-5\vdots n^2+n-1(1)$

$\Rightarrow n(2n-5)\vdots n^2+n-1$
$\Rightarrow 2(n^2+n-1)-7n+2\vdots n^2+n-1$
$\Rightarrow 7n-2\vdots n^2+n-1(2)$

Từ $(1); (2)\Rightarrow 7n-2-3(2n-5)\vdots n^2+n-1$

$\Rightarrow n+13\vdots n^2+n-1(3)$

Từ $(1); (3)\Rightarrow 2(n+13)-(2n-5)\vdots n^2+n-1$
$\Rightarrow 31\vdots n^2+n-1$

$\Rightarrow n^2+n-1\in\left\{\pm 1; \pm 31\right\}$

Đến đây bạn xét các TH để tìm $n$ thôi.

1 tháng 11 2020

\(A=x^4-6x^3+ax^2+bx+1\)

Để A là bình phương của 1 đa thức thì \(A=\left(x^2+cx+1\right)^2\)

\(\Rightarrow A=x^4+c^2x^2+1+2cx^3+2x^2+2cx\)

\(=x^4+2cx^3+\left(2+c^2\right)x^2+2cx+1\)

Đồng nhất hệ số ta có: \(\hept{\begin{cases}2c=-6\\2+c^2=a\\2c=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\2+\left(-3\right)^2=a\\2.\left(-3\right)=b\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=2+9\\b=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}c=-3\\a=11\\b=-6\end{cases}}\)

Vậy \(a=11\)và \(b=-6\)

1 tháng 11 2020

bạn ơi sao lại là (x^2+cx+1)^2 ạ 

TRÒ CHƠI (chạy tiếp sức) Chuẩn bị :  Giáo viên chia lớp thành n nhóm, mỗi nhóm 4 em sao cho các nhóm đều có em học giỏi, học khá, học trung bình,....Mỗi nhóm tự đặt cho nhóm mình một cái tên, chẳng hạn, nhóm "Con Nhím", nhóm "Con Ốc", nhóm "Đoàn Kết",....Trong mỗi nhóm, học sinh tự đánh số từ 1 đến 4. Như vậy sẽ có n học sinh số 1, n học sinh số 2,.... Giáo viên chuẩn bị 4 đề toán về...
Đọc tiếp

TRÒ CHƠI (chạy tiếp sức)

Chuẩn bị : 

Giáo viên chia lớp thành n nhóm, mỗi nhóm 4 em sao cho các nhóm đều có em học giỏi, học khá, học trung bình,....Mỗi nhóm tự đặt cho nhóm mình một cái tên, chẳng hạn, nhóm "Con Nhím", nhóm "Con Ốc", nhóm "Đoàn Kết",....Trong mỗi nhóm, học sinh tự đánh số từ 1 đến 4. Như vậy sẽ có n học sinh số 1, n học sinh số 2,....

Giáo viên chuẩn bị 4 đề toán về giải phương trình, đánh số từ 1 đến 4. Mỗi đề toán được phôtocopy thành n bản và cho mỗi bản vào một phong bì riêng. Như vậy sẽ có n bì chứa đề toán số 1, n bì chứa đề toán số 2,....Các đề toán được chọn theo nguyên tắc sau :

Khi có hiệu lệnh, học sinh số 2 của các nhóm nhanh chóng mở đề số 1, giải rồi chuyển giá trị x tìm được cho bạn số 2 của nhóm mình. Khi nhận được giá trị x, học sinh số 2 mới được phép mở đề, thay giá trị x vào, giải phương trình để tìm y rồi chuyển đáp số cho bạn số 3 của nhóm mình. Học sinh số 3 cũng làm tương tự....Học sinh số 4 chuyển giá trị tìm được của t cho giáo viên (đồng thời là giám khảo)

Nhóm nào nộp kết quả đúng đầu tiên thì thắng cuộc.

3
22 tháng 4 2017

undefined

20 tháng 5 2017

- Học sinh 1: (đề số 1) 2(x -2) + 1 = x - 1

⇔ 2x – 4 – 1 = x -1 ⇔ x = 2

- Học sinh 2: (đề số 2) Thay x = 2 vào phương trình ta được:

(2 + 3)y = 2 + y ⇔ 5y = 2 + y ⇔ y = 1/2

- Học sinh 3: (đề số 3) Thay y = 1/2 vào phương trình ta được:

Giải bài 26 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

- Học sinh 4 (đề số 4) thay z = 2/3 vào phương trình ta được:

Giải bài 26 trang 17 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy t = 2.