Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a4 + b4 + c4 + d4 = 40000 + a000 + b00 + c0 + d
a4 + b4 + c4 + d4 - d = 4abc0
a4 + b4 + c4 + d4 - abcd = 40000
nếu a ; b ; c ; d bằng nhau thì
a 4 + 4 + 4 + 4 - abcd = 40000
a16 - abcd = 40000
cho a = 1 ; vậy biểu thức là :
16 - abcd = 40000
vậy không thể chứng minh được
nhé !
Kết luận : .....................................................
a4 ; b4;....đều là số dương nên theo bđt cosi ta có:
a4 + b4 + c4 + d4 >= 4căn mũ 4 của (abcd)4 >= 4abcd
dấu = chỉ xảy ra khi a=b=c=d (dpcm)
Áp dụng bất đẳng thức Cauchy - Schwarz ta được :
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{a^4b^4c^4d^4}=4abcd\)
Dấu "=" xảy ra \(a=b=c=d\) (đpcm)
Áp dụng BĐT Cauchy cho 4 số dương:
\(a^4+b^4+c^4+d^4\ge4\sqrt[4]{\left(abcd\right)^4}=4abcd\)
(Dấu "="\(\Leftrightarrow a=b=c=d\))
\(\Rightarrow a=b=c=d=\frac{2016}{4}=504\)
Bài này em làm nhầm rồi nhé: chú ý: \(\sqrt[4]{\left(abcd\right)^4}=\left|abcd\right|\ne abcd\) nhé!
giả sử a=b=c=d => \(a^4+a^4+a^4+a^4=4.a.a.a.a\Leftrightarrow4a^4=4a^4\)=> thỏa mãn điều kiện đầu bài
=> điểu giả sử đúng
Áp đụng BĐT co si ta có:
a4+b4>2a2b2
b4+c4>2b2c2
c4+d4>2c2d2
d4+a4>2a2d2
=>2(a4+b4+c4+d4)>2(a2b2+b2c2+c2d2+a2d2)
=>a4+b4+c4+d4>a2b2+b2c2+c2d2+a2d2(1)
Dấu"=" xảy ra <=>a=b=c=d
Tiếp tục ta có:
a2b2+c2d2>2abcd
b2c2+a2d2>2bcd
=>a2b2+b2c2+c2d2+a2d2>4abcd(2)
Từ 1 và 2 =>a4+b4+c4+d4>4abcd
Dấu "=" xảy ra <=>a=b=c=d
=>a4+b4+c4+d4=4abcd<=>a=b=c=d