K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

a+b+c=abc?? =))

21 tháng 1 2022

hờ e xíu

 

Hãy biến đổi từ: a³ + b³ + c³ = 3abc
<=> (a + b + c)(a² + b² + c² - ab - bc - ca) = 0
Hoặc a + b + c = 0
Hoặc (a² + b² + c² - ab - bc - ca) = 0
TH1: a + b + c = 0 => a = -(b + c); b = -( a + c); c = -( a + b)
=> A = [1 - (b +c)/b][1 - (a + c)/c][1 - (a + b)/a]
=> A =[1 - 1 - c/b][1 - 1 - a/c][1 - 1 - b/a]
=> A = (-c/b)(-a/c)(-b/a) = -1
TH2: (a² + b² + c² - ab - bc - ca) = 0 <=> (a - b)² +(b - c)² + (c - a)² = 0
=> a - b = b - c = c - a = 0 hay a = b = c
=> A = (1 + 1)(1 + 1)(1+ 1) = 8

a+b+c=1; a>0; b>0; c>0

=>a>=b>=c>=0

=>a(a-c)>=b(b-c)>=0

=>a(a-b)(a-c)>=b(a-b)(b-c)

=>a(a-b)(a-c)+b(b-a)(b-c)>=0

mà (a-c)(b-c)*c>=0 và c(c-a)(c-b)>=0 

nên a(a-b)(a-c)+b(b-a)(b-c)+(a-c)(b-c)*c>=0

=>a^3+b^3+c^3+3acb>=a^2b+a^2c+b^2c+b^2a+c^2b+c^2a

=>a^3+b^3+c^3+6abc>=(a+b+c)(ab+bc+ac)

=>a^3+b^3+c^3+6abc>=(ab+bc+ac)

mà a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)

nên 2(a^3+b^3+c^3)+3acb>=a^2+b^2+c^2>=ab+bc+ac(ĐPCM)

19 tháng 3 2020

bài này hình như có điều kiện \(a,b,c\ge1\)

Bài toán phụ \(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\)(bạn tự chứng minh nhé biến đổi tương đương là thấy mà)

Ta có: \(\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}+\frac{1}{1+abc}\ge\frac{2}{1+\sqrt{a^3b^3}}+\frac{2}{1+\sqrt{abc^4}}\ge\frac{4}{1+\sqrt[4]{a^4b^4c^4}}=\frac{4}{1+abc}\)

\(\Leftrightarrow\frac{1}{1+a^3}+\frac{1}{1+b^3}+\frac{1}{1+c^3}\ge\frac{3}{1+abc}\)(đpcm)

19 tháng 3 2020

\( \dfrac{1}{{1 + {a^3}}} + \dfrac{1}{{1 + {b^3}}} + \dfrac{1}{{1 + {c^3}}} \ge \dfrac{3}{{1 + abc}}\\ \Leftrightarrow \dfrac{1}{{1 + {a^3}}} + \dfrac{1}{{1 + {b^3}}} + \dfrac{1}{{1 + {c^3}}} + \dfrac{1}{{abc}} \ge \dfrac{4}{{1 + abc}} \)

Ta có:

\(\dfrac{1}{{1 + {a^3}}} + \dfrac{1}{{1 + {b^3}}} + \dfrac{1}{{1 + {c^3}}} + \dfrac{1}{{1 + abc}} \ge \dfrac{2}{{1 + \sqrt {{a^3}{b^3}} }} + \dfrac{2}{{1 + \sqrt {ab{c^4}} }} \ge \dfrac{4}{{1 + \sqrt {{a^3}{b^3}\sqrt {ab{c^4}} } }} = \dfrac{4}{{1 + abc}}\)

Suy ra: \(\dfrac{1}{{1 + {a^3}}} + \dfrac{1}{{1 + {b^3}}} + \dfrac{1}{{1 + {c^3}}} \ge \dfrac{3}{{1 + abc}}\)

Vậy BĐT được chứng minh. Đẳng thức xảy ra khi và chỉ khi $a=b=c=1$

Anh đã chỉnh câu hỏi của em dưới dạng công thức. Những lần sau đặt câu hỏi nhớ ghi dưới dạng công thức cho dễ nhìn, dễ hiểu để các bạn hỗ trợ em nhé! Chúc em học tốt cùng hoc24.

27 tháng 9 2023

Ta có \(a^4+b^4\ge2a^2.b^2\) (Bất đẳng thức Cô si với \(a^2;b^2\ge0\) )
Tương tự \(b^4+c^4\ge2b^2.c^2;a^4+c^4\ge2a^2.c^2\)
Do đó: \(a^4+b^4+c^4\ge\dfrac{2a^2b^2+2b^2c^2+2a^2c^2}{2}=a^2b^2+b^2c^2+a^2c^2\)(1)
Ta lại có:\(a^2b^2+b^2c^2\ge2ab^2c;b^2c^2+a^2c^2\ge2abc^2;a^2c^2+a^2b^2\ge2a^2bc\)
Nên\(a^2b^2+b^2c^2+a^2c^2\ge a^2bc+ab^2c+abc^2=abc\left(a+b+c\right)=3abc\left(a+b+c=3,gt\right)\)
(1);(2) => \(a^4+b^4+c^4\ge3abc\) ;đẳng thức xảy ra khi a = b = c = 1 (*)
Giả sử: \(a^3+b^3+c^3\ge3abc\\ \Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\ge0\\ \Leftrightarrow\left(a+b+c\right)^3-3ab\left(a+b+c\right)-3c\left(a+b\right)\left(a+b+c\right)\ge0\\ \Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-ab-bc-ac\right]\ge0\\2.3\left(a^2+b^2+c^2-ab-bc-ac\right)\ge0\\ \Leftrightarrow3\left(2a^2+2b^2+2c^2-2ab-2bc-2ac\right)\ge0\\\Leftrightarrow3\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\)
Đúng mới mọi a,b,c ϵR 
Vậy \(a^3+b^3+c^3\ge3abc\) và đẳng thức xảy ra khi a=b=c=(a+b+c)/3 =1(**)
Ta lại có \(a^4\ge a^3;b^4\ge b^3;c^4\ge c^3\) mà a+b+c = 3
Nên \(a^4+b^4+c^4>a^3+b^3+c^3\) (***)
Từ (*);(**);(***) ta có điều phải chứng minh và đẳng thức xảy ra khi a= b=c=1
 

18 tháng 4 2024

Tôi có cách chứng minh bằng đồng bậc hóa bất đẳng thức như sau:

ta sẽ chứng minh:

\(3\left(a^4+b^4+c^4\right)>=\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
<=> \(2\left(a^4+b^4+c^4\right)>=ab\left(a^2+b^2\right)+bc\left(b^2+c^2\right)+ca\left(c^2+a^2\right)\)

mà ta có theo bất đẳng thức AMGM \(a^4+b^4>=\dfrac{\left(a^2+b^2\right)^2}{2}>=\dfrac{2ab\left(a^2+b^2\right)}{2}=ab\left(a^2+b^2\right)\)
làm tương tự rồi cộng lại, ta có đpcm.

30 tháng 8 2021

TH1: a, b, c có ít nhất 1 số chi hết cho 7

=> abc chia hết cho 7

=> Đpcm

TH2: a, b, c không có số nào chia hết cho 7

=> a, b, c chia 7 dư từ 1 đến 6

=> a^3, b^3, c^3 chia 7 dư 1 hoặc 6 (đã được CM)

(Bạn có thể tự CM bằng công thức sau: 

VD: a chia 7 dư r => a = 7k + r (với k là thương)

=> a^3 = (7k + r)^3 )

=> a^3, b^3, c^3 có ít nhất 2 số cùng số dư

=> (a^3 - b^3)(b^3 - c^3)(c^3 - a^3) có ít nhất 1 cặp số chia hết cho 7

=> Đpcm

30 tháng 8 2021

Cảm ơn bạn nhiều nè :33