Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. (A+B)2 = A2+2AB+B2
2. (A – B)2= A2 – 2AB+ B2
3. A2 – B2= (A-B)(A+B)
4. (A+B)3= A3+3A2B +3AB2+B3
5. (A – B)3 = A3- 3A2B+ 3AB2- B3
6. A3 + B3= (A+B)(A2- AB +B2)
7. A3- B3= (A- B)(A2+ AB+ B2)
8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC
7 hằng đẳng thức cơ bản:
1, (a + b)2 = a2 + 2ab + b2
2, (a _ b)2 = a2 _ 2ab + b2
3, a2 - b2 = ( a - b ). (a + b )
4. (A+B)3= A3+3A2B +3AB2+B3
5. (A – B)3 = A3- 3A2B+ 3AB2- B3
6. A3 + B3= (A+B)(A2- AB +B2)
7. A3- B3= (A- B)(A2+ AB+ B2)
Mở rộng :
8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC
9. (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac
10. (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc
11. a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)
12. a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)
13. (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)
14. a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)
15. (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)
16. (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2
17. (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc
19. ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33
20.ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
có 7 hằng đẳng thức đáng nhớ ( quan trọng ) được học ở lớp 8
ngoài ra còn khà nhiều
(a+b+c)3=[(a+b)+c]3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)
==a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]
=a3+b3+c3+3(a+b)(a+c)(b+c)
#)Giải :
\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+ca+c^2\right)\)
\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=\left(a+b^3\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)
\(=\left(a+b+c\right)^3\)
\(\Rightarrowđpcm\)
- Bình phương của 1 tổng: (a + b)2 = a2 + 2ab + b2 = (a - b)2 + 4ab
- Bình phương của 1 hiệu: (a - b)2 = a2 - 2ab + b2 = (a + b)2 - 4ab
- Hiệu 2 bình phương: a2 - b2 = (a - b)(a + b)
- Lập phương của 1 tổng: (a + b)3 = a3 + 3a2b + 3ab2 + b3
- Lập phương của 1 hiệu: (a - b)3 = a3 - 3a2b + 3ab2 - b3
- Tổng 2 lập phương: a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)
- Hiệu 2 lập phương: a3 - b3 = (a - b)(a2 + ab + b2) = (a - b)3 + 3a2b - 3ab2 = (a - b)3 + 3ab(a - b)
Số cần tìm là :
98 938 458 905 780
Đáp số : 98 938 458 905 780 .
Nha bn !
a) \(\left(5x-2\right)^2-\left(7-6x\right)^2=0\)
\(\Leftrightarrow\left(5x-2-7+6x\right)\left(5x-2+7-6x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}11x-9=0\\-x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{11}\\x=5\end{cases}}}\)
b) \(\left(3x-1\right)^2+\left(5x+2\right)^2=x+5\)
\(\Leftrightarrow9x^2+6x+1+25x^2+20x+4=x+5\)
\(\Leftrightarrow34x^2+26x+5=x+5\)
\(\Leftrightarrow34x^2+25x=0\)
\(\Leftrightarrow x\left(34x+25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\34x+25=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-25}{34}\end{cases}}}\)
c) Tự làm nốt
a) ( 5x - 2 )2 - ( 7 - 6x )2 = 0
<=> [ 5x - 2 - ( 7 - 6x ) ][ 5x - 2 + ( 7 - 6x ) ] = 0
<=> [ 5x - 2 - 7 + 6x ][ 5x - 2 + 7 - 6x ] = 0
<=> [ 11x - 9 ][ 5 - x ] = 0
<=> \(\orbr{\begin{cases}11x-9=0\\5-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{11}\\x=5\end{cases}}\)
b) ( 3x - 1 )2 + ( 5x + 2 )2 = x + 5
<=> 9x2 - 6x + 1 + 25x2 + 20x + 4 = x + 5
<=> 34x2 + 14x + 5 = x + 5
<=> 34x2 + 14x + 5 - x - 5 = 0
<=> 34x2 + 13x = 0
<=> 13x( 34/13x + 1 ) = 0
<=> \(\orbr{\begin{cases}13x=0\\\frac{34}{13}x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{13}{34}\end{cases}}\)
c) ( x - 2 )2 - ( 3 + 2x )2 = 20x - 4
<=> x2 - 4x + 4 - ( 4x2 + 12x + 9 ) = 20x - 4
<=> x2 - 4x + 4 - 4x2 - 12x - 9 - 20x + 4 = 0
<=> -3x2 - 36x - 1 = 0
=> Vô nghiệm ( bấm EQN ra nghiệm vô tỉ )
Các hệ thức liên quan
cương khùng
snvv