K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018
  1. Bình phương của một tổng:

    {\displaystyle (a+b)^{2}=a^{2}+2ab+b^{2}\,}

  2. Bình phương của một hiệu:

    {\displaystyle (a-b)^{2}=a^{2}-2ab+b^{2}\,}

  3. Hiệu hai bình phương:

    {\displaystyle a^{2}-b^{2}=(a-b)(a+b)\,}

  4. Lập phương của một tổng:

    {\displaystyle (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\,}

  5. Lập phương của một hiệu:

    {\displaystyle (a-b)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}\,}

  6. Tổng hai lập phương:

    {\displaystyle a^{3}+b^{3}=(a+b)(a^{2}-ab+b^{2})=(a+b)^{3}-3a^{2}b-3ab^{2}=(a+b)^{3}-3ab(a+b)}

  7. Hiệu hai lập phương:

    {\displaystyle a^{3}-b^{3}=(a-b)(a^{2}+ab+b^{2})=(a-b)^{3}+3a^{2}b-3ab^{2}=(a-b)^{3}+3ab(a-b)}

Các hệ thức liên quan

  1. {\displaystyle (a+b+c)^{3}=a^{3}+b^{3}+c^{3}+3(a+b)(b+c)(c+a)\,}
  2. {\displaystyle a^{3}+b^{3}+c^{3}-3abc=(a+b+c)(a^{2}+b^{2}+c^{2}-ab-bc-ca)\,}
  3. {\displaystyle (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2ab+2bc-2ca\,}
  4. {\displaystyle (a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2ab+2bc+2ca\,}
  5. {\displaystyle (a+b-c)^{2}=a^{2}+b^{2}+c^{2}+2ab-2bc-2ca\,}
10 tháng 10 2018

cương khùng 

snvv 

10 tháng 10 2018

1. (A+B)2 = A2+2AB+B2

2. (A – B)2= A2 – 2AB+ B2

3. A– B2= (A-B)(A+B)

4. (A+B)3= A3+3A2B +3AB2+B3

5. (A – B)3 = A3- 3A2B+ 3AB2- B3

6. A+ B3= (A+B)(A2- AB +B2)

7. A3- B3= (A- B)(A2+ AB+ B2)

8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

10 tháng 10 2018

Giông bn triphai Tyte

26 tháng 8 2016

tui chỉ biết 7 hăng cơ bản thôi

6 tháng 9 2016

7 hằng đẳng thức cơ bản:

1, (a + b)2 = a+ 2ab + b2

2, (a _ b)2 = a2 _ 2ab + b2

3, a- b2 = ( a - b ). (a + b )

4. (A+B)3= A3+3A2B +3AB2+B3

5. (A – B)3 = A3- 3A2B+ 3AB2- B3

6. A+ B3= (A+B)(A2- AB +B2)

7. A3- B3= (A- B)(A2+ AB+ B2)

Mở rộng :

8. (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

9. (a+b−c)2=a2+b2+c2+2ab−2bc−2ac(a+b−c)2=a2+b2+c2+2ab−2bc−2ac


10. (a−b−c)2=a2+b2+c2−2ab−2ac+2bc(a−b−c)2=a2+b2+c2−2ab−2ac+2bc

11. a3+b3=(a+b)3−3ab(a+b)a3+b3=(a+b)3−3ab(a+b)


12. a3−b3=(a−b)3+3ab(a−b)a3−b3=(a−b)3+3ab(a−b)

13. (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)

14. a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac)a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ac) 

15. (a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)(a−b)3+(b−c)3+(c−a)3=3(a−b)(b−c)(c−a)

16. (a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2(a+b)(b+c)(c+a)−8abc=a(b−c)2+b(c−a)2+c(a−b)2

17. (a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc(a+b)(b+c)(c+a)=(a+b+c)(ab+bc+ca)−abc

19. ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33ab2+bc2+ca2−a2b−b2c−c2a=(a−b)3+(b−c)3+(c−a)33

20.ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3ab3+bc3+ca3−a3b−b3c−c3a=(a+b+c)[(a−b)3+(b−c)3+(c−a)3]3
 

5 tháng 9 2018

12 hằng đẳng thức thì phải

5 tháng 9 2018

có 7 hằng đẳng thức đáng nhớ ( quan trọng ) được học ở lớp 8

ngoài ra còn khà nhiều

(a+b+c)3=[(a+b)+c]3=(a+b)3+c3+3(a+b)c(a+b+c)
=a3+b3+3ab(a+b)+c3+3(a+b)c(a+b+c)
=a3+b3+c3+3(a+b)[ab+c(a+b+c)]
=a3+b3+c3+3(a+b)(ab+ac+bc+c2)

==a3+b3+c3+3(a+b)[(ab+ac)+(bc+c2)]

=a3+b3+c3+3(a+b)(a+c)(b+c)

25 tháng 6 2019

#)Giải :

\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=a^3+b^3+c^3+3\left(a+b\right)\left(ab+ac+ca+c^2\right)\)

\(=a^3+b^3+3ab\left(a+b\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=\left(a+b^3\right)+c^3+3\left(a+b\right)c\left(a+b+c\right)\)

\(=\left(a+b+c\right)^3\)

\(\Rightarrowđpcm\)

  1. Bình phương của 1 tổng: (a + b)2 = a2 + 2ab + b2 = (a - b)2 + 4ab
  2. Bình phương của 1 hiệu: (a - b)2 = a2 - 2ab + b2 = (a + b)2 - 4ab
  3. Hiệu 2 bình phương: a2 - b2 = (a - b)(a + b)
  4. Lập phương của 1 tổng: (a + b)3 = a3 + 3a2b + 3ab2 + b3
  5. Lập phương của 1 hiệu: (a - b)3 = a3 - 3a2b + 3ab2 - b3
  6. Tổng 2 lập phương: a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3a2b - 3ab2 = (a + b)3 - 3ab(a + b)
  7. Hiệu 2 lập phương: a3 - b3 = (a - b)(a2 + ab + b2) = (a - b)3 + 3a2b - 3ab2 = (a - b)3 + 3ab(a - b)
22 tháng 9 2019

(a+b)^2=a^2+b^2+2ab

(a-b)^2=a^2+b^2-2ab

a^2-b^2=(a-b)(a+b)

11 tháng 7 2017

bạn ơi số to lắm

11 tháng 7 2017

Số cần tìm là :

98 938 458 905 780 

Đáp số : 98 938 458 905 780 .

Nha bn ! 

16 tháng 8 2020

a) \(\left(5x-2\right)^2-\left(7-6x\right)^2=0\)

\(\Leftrightarrow\left(5x-2-7+6x\right)\left(5x-2+7-6x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}11x-9=0\\-x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{11}\\x=5\end{cases}}}\)

b) \(\left(3x-1\right)^2+\left(5x+2\right)^2=x+5\)

\(\Leftrightarrow9x^2+6x+1+25x^2+20x+4=x+5\)

\(\Leftrightarrow34x^2+26x+5=x+5\)

\(\Leftrightarrow34x^2+25x=0\)

\(\Leftrightarrow x\left(34x+25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\34x+25=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{-25}{34}\end{cases}}}\)

c) Tự làm nốt

16 tháng 8 2020

a) ( 5x - 2 )2 - ( 7 - 6x )2 = 0

<=> [ 5x - 2 - ( 7 - 6x ) ][ 5x - 2 + ( 7 - 6x ) ] = 0

<=> [ 5x - 2 - 7 + 6x ][ 5x - 2 + 7 - 6x ] = 0

<=> [ 11x - 9 ][ 5 - x ] = 0

<=> \(\orbr{\begin{cases}11x-9=0\\5-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{11}\\x=5\end{cases}}\)

b) ( 3x - 1 )2 + ( 5x + 2 )2 = x + 5 

<=> 9x2 - 6x + 1 + 25x2 + 20x + 4 = x + 5

<=> 34x2 + 14x + 5 = x + 5

<=> 34x2 + 14x + 5 - x - 5 = 0

<=> 34x2 + 13x = 0

<=> 13x( 34/13x + 1 ) = 0

<=> \(\orbr{\begin{cases}13x=0\\\frac{34}{13}x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{13}{34}\end{cases}}\)

c) ( x - 2 )2 - ( 3 + 2x )2 = 20x - 4 

<=> x2 - 4x + 4 - ( 4x2 + 12x + 9 ) = 20x - 4

<=> x2 - 4x + 4 - 4x2 - 12x - 9 - 20x + 4 = 0

<=> -3x2 - 36x - 1 = 0

=> Vô nghiệm ( bấm EQN ra nghiệm vô tỉ )