K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 5 2019

\(VT=2sin^6x-3cos^4x+1=2sin^6x+2cos^6x-3cos^4x-3sin^4x+1+3sin^4x-2cos^6x\)

Dài quá, không đủ viết chung 1 dòng, tách lẻ ra:

\(2\left(sin^6x+cos^6x\right)=2\left[\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\right]\)

\(=2-6sin^2x.cos^2x\)

\(-3\left(sin^4x+cos^4x\right)=-3\left(sin^2x+cos^2x\right)^2+6sin^2x.cos^2x\)

\(=-3+6sin^2x.cos^2x\)

\(\Rightarrow VT=2-6sin^2x.cos^2x-3+6sin^2x.cos^2x+1+3sin^4x-2cos^6x\)

\(=3sin^4x-2cos^6x\)

31 tháng 7 2018

Cái này là toán lớp 8 chứ không phải lớp 10 nhé

Bài 1: 

1: \(=x^6+27-x^6-9x^4-27x^2-27\)

\(=-9x^4-27x^2\)

2: \(=x^3-9x^2+27x-27-x^3+27+6x^2+12x+6\)

\(=-3x^2+39x+6\)

Bài 2: 

Sửa đề: \(\dfrac{2006^3+1}{2006^2-2005}\)

\(=\dfrac{\left(2006+1\right)\left(2006^2-2006+1\right)}{2006^2-2005}\)

\(=2006+1=2007\)

19 tháng 7 2017

Tìm x biết:

b/\(\left(2x+3\right)^2-\left(5x-4\right)\left(5x+4\right)=\left(x+5\right)^2-\left(3x-1\right)\left(7x+2\right)-\left(x^2-x+1\right)\)

<=> \(4x^2 +12x+9-25x^2+16-x^2-10x-25+21x^2+6x-7x-2+x^2-x+1=0\)

<=>0x-1=0

<=>0x=1 (vô lí) (dòng này không cần ghi thêm cũng được)

=> Không có giá trị x nào thỏa mãn

c/ \((1-3x)^2-(x-2)(9x+1)=(3x-4)(3x+4)-9(x+3)^2\)

<=>\(1-6x+9x^2-9x^2-x+18x+2-9x^2+16+9x^2+54x+81=0\)

<=> 65x+100=0

<=> x=\(\dfrac{-20}{13}\)

d/\((3x+4)(3x-4)-(2x+5)^2=(x-5)^2+(2x+1)^2-(x^2-2x)+(x-1)^2\)

<=> \(9x^2-16-4x^2-20x-25-x^2+10x-25-4x^2-4x-1+x^2+2x-x^2+2x-1=0\)

<=> -10x-68=0

<=> x=\(\dfrac{-34}{5}\)

AH
Akai Haruma
Giáo viên
29 tháng 3 2019

Lời giải:

a)

\(\frac{1-\cos x}{\sin x}=\frac{(1-\cos x)(1+\cos x)}{\sin x(1+\cos x)}=\frac{1-\cos ^2x}{\sin x(1+\cos x)}=\frac{\sin ^2x}{\sin x(1+\cos x)}=\frac{\sin x}{1+\cos x}\)

b)

\((\sin x+\cos x-1)(\sin x+\cos x+1)=(\sin x+\cos x)^2-1^2\)

\(=\sin ^2x+\cos ^2x+2\sin x\cos x-1=1+2\sin x\cos x-1=2\sin x\cos x\)

c)

\(\frac{\sin ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{1-\cos ^2x+2\cos x-1}{2+\cos x-\cos ^2x}=\frac{-\cos ^2x+2\cos x}{2+\cos x-\cos ^2x}\)

\(=\frac{\cos x(2-\cos x)}{(2-\cos x)(\cos x+1)}=\frac{\cos x}{\cos x+1}\)

d)

\(\frac{\cos ^2x-\sin ^2x}{\cot ^2x-\tan ^2x}=\frac{\cos ^2x-\sin ^2x}{\frac{\cos ^2x}{\sin ^2x}-\frac{\sin ^2x}{\cos ^2x}}=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{\cos ^4x-\sin ^4x}\)

\(=\frac{\sin ^2x\cos ^2x(\cos ^2x-\sin ^2x)}{(\cos ^2x-\sin ^2x)(\cos ^2x+\sin ^2x)}=\frac{\sin ^2x\cos ^2x}{\sin ^2x+\cos ^2x}=\sin ^2x\cos ^2x\)

e)

\(1-\cot ^4x=1-\frac{\cos ^4x}{\sin ^4x}=\frac{\sin ^4x-\cos ^4x}{\sin ^4x}=\frac{(\sin ^2x-\cos ^2x)(\sin ^2x+\cos ^2x)}{\sin ^4x}\)

\(=\frac{\sin ^2x-\cos ^2x}{\sin ^4x}=\frac{\sin ^2x-(1-\sin ^2x)}{\sin ^4x}=\frac{2\sin ^2x-1}{\sin ^4x}=\frac{2}{\sin ^2x}-\frac{1}{\sin ^4x}\)

Ta có ddpcm.

8 tháng 5 2017

\(C=2\left(sin^4x+cos^4x+sin^2xcos^2x\right)^2-\left(sin^8x+cos^8x\right)\)

\(=2\left(\left(sin^2x+cos^2x\right)^2-sin^2xcos^2x\right)^2-\left(\left(sin^4x+cos^4x\right)^2-2sin^4xcos^4x\right)\)

\(=2\left(1-sin^2xcos^2x\right)^2-\left(\left(\left(sin^2x+cos^2x\right)^2-2sin^2xcos^2x\right)^2-2sin^4xcos^4x\right)\)

\(=2\left(1-2sin^2xcos^2x+sin^4xcos^4x\right)-\left(1-4sin^2xcos^2x+4sin^4xcos^4x-2sin^4xcos^4x\right)\)

\(=1\)

11 tháng 5 2017

co cach giai trac nghiem cau nay nhanh k ak