Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 3 chia hết cho n
vì n chia hết cho n =>để n + 3 chia hết cho n thì 3 phải chia hết cho n
=>n Є {1;3} (với n thuộc N còn nếu n thuộc Z thì có âm nữa
7n + 8 chia hết cho n
vì 7n chia hết cho n => để 7n +8 chia hết cho n thì 8 phải chia hết cho n
=>n Є {1;2;4;8}
n + 5 ) chia hết cho n ( n khác 0)
( 7n + 8) chia hết cho n ( n khác 0)
35 - 12n chia hết cho n ( n<3 và n khác 0)
a)\(\left(n+5\right)⋮n\)
\(\Rightarrow n+5=1;-1;5;-5\)
\(\Rightarrow n=-4;-6;0;-10\)
a) \(\frac{7n+8}{n}=\frac{7n}{n}+\frac{8}{n}=7+\frac{8}{n}\)
\(\Rightarrow n\in\text{Ư}\left(8\right)=\left\{1;2;4;8\right\}\)
b) \(\frac{35-12n}{n}=\frac{35}{n}-\frac{12n}{n}=\frac{35}{n}-12\)
\(\Rightarrow n\in\text{Ư}\left(35\right)=\left\{1;3;5;7;35\right\}\)
Loại \(n\in\left\{1;3\right\}\) vì n > 3.
Vậy: \(n\in\left\{5;7;35\right\}\)
c) \(\frac{n+8}{n+3}=\frac{n+3+5}{n+3}=\frac{n+3}{n+3}+\frac{5}{n+3}=1+\frac{5}{n+3}\)
\(\Rightarrow n+3\in\text{Ư}\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow n+3=1\Rightarrow n=1-3=-2\) (loại vì -2 < 0)
\(\Rightarrow n+3=5\Rightarrow n=2\)
Vậy: n = 2
giải đầy đủ ba câu nhưng không yêu cầu chi tiết
a. n phải chia hết cho n rồi cãi sao đuọc
7 n càng chia hết cho n
vậy 8 phải chia hết cho n
n=(1.2.4.8)
b. ồ n<3 thì còn mỗi 1.2 n=1 hiển nhiên rồi, n=2 ko cần tử biết loại
vậy n=1 (người ra câu nàylãng xẹt)
c. (n+8)/(n+3) ko có dấu chia hết tạm dùng (...) là dấu chia hết
(n+3) (...) (n+3) hiển nhiên
(n+8) (...) (n+3)
=>[n+8-(n+3)] (...)(n+3)
5(...)(n+3)
vậy n+3=(1,5)
n=(2)
\(a,\frac{7n+3}{n}\)
\(\Rightarrow3⋮n\)Vì \(7n⋮n\)
\(\Rightarrow n\inƯ\left(3\right)=\left(1;3\right)\)
\(b,\frac{12n-1}{4n+2}\)
\(=\frac{12n+6-7}{4n+2}\)
\(=\frac{3\left(4n+2\right)}{4n+2}-\frac{7}{4n+2}\)
Để \(12n-1⋮4n+2\)
\(\Rightarrow7⋮4n+2\)
\(\Rightarrow4n+2\inƯ\left(7\right)=\left(1;7;-1;-7\right)\)
a) Ta có :
\(7n+3⋮n\)
Mà \(n⋮n\)
\(\Leftrightarrow\left\{{}\begin{matrix}7n+3⋮n\\7n⋮n\end{matrix}\right.\)
\(\Leftrightarrow3⋮n\)
Vì \(n\in N;3⋮n\Leftrightarrow n\inƯ\left(3\right)=\left\{1;3\right\}\)
Vậy ....................
b) Ta có :
\(12n-1⋮4n+2\)
Mà \(4n+2⋮4n+2\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n-1⋮4n+2\\12n+6⋮4n+2\end{matrix}\right.\)
\(\Leftrightarrow7⋮4n+2\)
Vì \(n\in N\Leftrightarrow4n+2\in N;4n+2\inƯ\left(7\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}4n+2=1\\4n+2=7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}n=\dfrac{-1}{4}\\n=\dfrac{5}{4}\end{matrix}\right.\) \(\left(loại\right)\)
Vậy ....
mình chỉ bt câu a mình học trên lớp thôi bn thông cảm ! :(
a.
Ta có: 7n+3 chia hết cho n => 7n chia hết cho n => 3 chia hết cho n
mà n thuộcN => n thuộc Ư(3)
vậy n thuộc Ư [1;3}
TICK zùm mình nhé!
g 7n chia het n-3
<=> 7n -21+21 chia het n-3
<=> 7(n-3) +21 chia het n-3
<=> 21 chia het n-3 (vi 7.(n-3) chia het cho n-3)
=> n-3 thuoc uoc cua 21
U(21) ={1;3;7;21}
=>n-3 thuoc{1;3;7;21}
n thuoc {4;6;10;24}
a)=>(n+3)+5 chia hết cho n+3
Mà n+3 chia hết cho n+3
=>5 chia hết cho n+3
=>n+3 thuộc Ư(5)={1;5}
=>n thuộc {-2;2}
Mà n thuộc N
=>n=2
b)=>(7n)+8 chia hết cho n
Mà 7n chia hết cho n
=>8 chia hết cho n
=>n thuộc Ư(8)={1;2;4;8}
a)Ta có:(n+8) chia hết cho (n+3)
<=> (n+3+5) chia hết cho (n+3)
Vì (n+3) chia hết cho (n+3)
(n+8) chia hết cho (n+3)
=> 5 chia hết cho n+3
=>n+3 thuộc Ư(5)
Mà n là số tự nhiên
=>a thuộc{1;5}
Ta có bảng:
n+3 n 1 5 -2 2
Mà n thuộc N
=> n=2
Vậy n=2
b,Ta có:(7n+8) chia hết cho n (n thuộc N)
Vì n chia hết cho n
=> 7n chia hết cho n
=> [(7n+8)-7n] chia hết cho n
<=> (7n+8-7n) chia hết cho n
=> 8 chia hết cho n
=> n thuộc Ư(8)
Mà n thuộc N
=> n thuộc {1;8}
Vậy n thuộc {1;8}
n+3 chia hết cho 3
Vì 3 chia hết cho 3 nên n chia hết cho 3
=> n thuộc B(3)
=> n = 3k (k thuộc N)
Vậy n có dạng 3k
7n+8 chia hết cho n
Vì 7n chia hết cho n nên 8 chia hết cho n
=> n thuộc Ư(8)={1;2;4;8}
câu tiếp tt