Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để \(\frac{\sqrt{x}+1}{\sqrt{x}-3}\in Z\Rightarrow\frac{4}{\sqrt{x}-3}\in Z\)
\(\Rightarrow\sqrt{x}-3\in\left(1;4;-1;-4\right)\)
\(\Rightarrow\sqrt{x}\in\left(4;7;2;-1\right)\)
\(\Rightarrow\sqrt{x}=4\Leftrightarrow x=2\)
\(4,A=x+\sqrt{x}+1\)
\(A=\left(\sqrt{x}\right)^2+2.\frac{1}{2}.\sqrt{x}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)
\(A=\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow A\ge\frac{3}{4}.\left(\sqrt{x}+\frac{1}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi :
\(\sqrt{x}+\frac{1}{2}=0\Leftrightarrow\sqrt{x}=-\frac{1}{2}\)
Vậy Min A = 3/4 khi căn x = -1/2
điều kiện \(x\ge0\)và x khác 1/4
Q= \(\frac{3\sqrt{x}+2}{2\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+4}-\frac{x-6\sqrt{x}+5}{2x+7\sqrt{x}-4}=\frac{3x+14\sqrt{x}+8+2x-3\sqrt{x}+1-x+6\sqrt{x}-5}{2x+7\sqrt{x}-4}\)
=\(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}\)
đề Q>1/2 thì \(\frac{4x+17\sqrt{x}+4}{2x+7\sqrt{x}-4}>\frac{1}{2}\)
<=> \(8x+34\sqrt{x}+8>2x+7\sqrt{x}-4\)<=> \(6x+27\sqrt{x}+12>0\) với mọi x>=0
vậy Q>1/2 khi x>=0 và x khác 1/4
a) \(B=\frac{\sqrt{x}-3}{x+\sqrt{x}+1}\left(ĐK:x\ge0\right)\)
\(=\frac{\sqrt{81}-3}{81+\sqrt{81}+1}=\frac{9-3}{81+9+1}=\frac{6}{91}\)
b) \(A=\frac{2x+1}{\sqrt{x^3}-1}-\frac{1}{\sqrt{x}-1}\left(ĐK:x\ge0;x\ne1\right)\)
\(=\frac{2x+1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
c) \(P=\frac{A}{B}\)
\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}:\frac{\sqrt{x}-3}{x+\sqrt{x}+1}\left(ĐK:x\ge0;x\ne9\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{\left(\sqrt{x}-3\right)+3}{\sqrt{x}-3}=1+\frac{3}{\sqrt{x}-3}\)
Vậy để P nguyên thì: \(\sqrt{x}-3\inƯ\left(3\right)\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;-3;3\right\}\)
+) \(\sqrt{x}-3=-1\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tm\right)\)
+) \(\sqrt{x}-3=1\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\left(tm\right)\)
+) \(\sqrt{x}-3=-3\Leftrightarrow\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
+) \(\sqrt{x}-3=3\Leftrightarrow\sqrt{x}=6\Leftrightarrow x=36\left(tm\right)\)
Vậy...........